
CSC 261/461 – Database Systems
Lecture 23

Fall 2017

CSC	261,	Fall	2017,	UR	

Announcements

• Project 3 Due on: 12/01

• Poster:
–Will be viewed by the whole department
– Even, you may present it later
– So, make sure, there is no typo and no embarrassing error.
– Go through the poster multiple times
– Strongly recommended:
• Send us a copy by Sunday. We will try to give you quick feedback.
• You can send the poster for printing on Tuesday

CSC	261,	Fall	2017,	UR	

Today’s Lecture

1. Transactions

2. Properties	of	Transactions:	ACID

3. Logging

CSC	261,	Fall	2017,	UR	

TRANSACTIONS

CSC	261,	Fall	2017,	UR	

Transactions: Basic Definition

A	transaction	(“TXN”)	is	a	sequence	
of	one	or	more	operations (reads	or	
writes)	which	reflects	a	single	real-
world	transition.

START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

In	the	real	world,	a	TXN	
either	happened	
completely	or	not	at	all

CSC	261,	Fall	2017,	UR	

Transactions: Basic Definition

A	transaction	(“TXN”)	is	a	sequence	of	one	or	
more	operations (reads	or	writes)	which	
reflects	a	single	real-world	transition.

In	the	real	world,	a	TXN	
either	happened	
completely	or	not	at	all

Examples:

• Transfer	money	between	accounts

• Purchase	a	group	of	products

• Register	for	a	class	(either	waitlist	or	
allocated)

CSC	261,	Fall	2017,	UR	

Transactions in SQL

• In “ad-hoc” SQL:
– Default: each statement = one transaction

• In a program, multiple statements can be grouped together
as a transaction:

START TRANSACTION
UPDATE Bank SET amount = amount – 100
WHERE name = ‘Bob’
UPDATE Bank SET amount = amount + 100
WHERE name = ‘Joe’

COMMIT

CSC	261,	Fall	2017,	UR	

Motivation for Transactions

Grouping user actions (reads & writes) into
transactions helps with two goals:

1. Recovery & Durability: Keeping the DBMS data
consistent and durable in the face of crashes,
aborts, system shutdowns, etc.

2. Concurrency: Achieving better performance by
parallelizing TXNs without creating anomalies

CSC	261,	Fall	2017,	UR	

Motivation

1. Recovery & Durability of user data is essential for
reliable DBMS usage

– The DBMS may experience crashes (e.g. power outages, etc.)

– Individual TXNs may be aborted (e.g. by the user)

Idea:	Make	sure	that	TXNs	are	either	durably	stored	in	full,	or
not	at	all;	keep	log	to	be	able	to	“roll-back”	TXNs

CSC	261,	Fall	2017,	UR	

Protection against crashes / aborts

Client 1:
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE FROM Product
WHERE price <=0.99

What	goes	wrong?

Crash	/	abort!

CSC	261,	Fall	2017,	UR	

Protection against crashes / aborts

Client 1:
START TRANSACTION

INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE FROM Product
WHERE price <=0.99

COMMIT OR ROLLBACK

Now	we’d	be	fine!		We’ll	see	how	/	why	this	lecture

CSC	261,	Fall	2017,	UR	

Motivation

2. Concurrent execution of user programs is
essential for good DBMS performance.

– Users should still be able to execute TXNs as if in isolation
and such that consistency is maintained

Idea:	Have	the	DBMS	handle	running	several	user	
TXNs	concurrently,	in	order	to	keep	CPUs	

humming…

CSC	261,	Fall	2017,	UR	

Multiple users: single statements

Client 1: UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2: UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Two	managers	attempt	to	discount	products	concurrently-
What	could	go	wrong?

CSC	261,	Fall	2017,	UR	

Multiple users: single statements

Client 1: START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

Client 2: START TRANSACTION
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

COMMIT

Now	works	like	a	charm- we’ll	see	how	/	why	next	lecture…

CSC	261,	Fall	2017,	UR	

2. PROPERTIES OF TRANSACTIONS

CSC	261,	Fall	2017,	UR	

What you will learn about in this section

1. Atomicity

2. Consistency

3. Isolation

4. Durability

CSC	261,	Fall	2017,	UR	

Transaction Properties: ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a state where integrity holds, to another where

integrity holds
• Isolated
– Effect of txns is the same as txns running one after another (ie

looks like batch mode)
• Durable
–Once a txn has committed, its effects remain in the database

CSC	261,	Fall	2017,	UR	

ACID: Atomicity

• TXN’s activities are atomic: all or nothing

– Intuitively: in the real world, a transaction is something
that would either occur completely or not at all

• Two possible outcomes for a TXN

– It commits: all the changes are made

– It aborts: no changes are made

CSC	261,	Fall	2017,	UR	

ACID: Consistency

• The tables must always satisfy user-specified integrity
constraints
– Examples:
• Account number is unique
• Stock amount can’t be negative
• Sum of debits and of credits is 0 (zero)

• How consistency is achieved:
– Programmer makes sure a txn takes a consistent state to a

consistent state
– System makes sure that the txn is atomic

CSC	261,	Fall	2017,	UR	

ACID: Isolation

• A transaction executes concurrently with other transactions

• Isolation: the effect is as if each transaction executes in
isolation of the others.

– E.g. Should not be able to observe changes from other
transactions during the run

CSC	261,	Fall	2017,	UR	

ACID: Durability

• The effect of a TXN must continue to exist (persist) after the
TXN
– And after the whole program has terminated
– And even if there are power failures, crashes, etc.
– And etc…

• Means: Write data to disk

CSC	261,	Fall	2017,	UR	

Challenges for ACID properties

• In spite of failures: Power failures, but not media failures

• Users may abort the program: need to “rollback the
changes”
– Need to log what happened

• Many users executing concurrently
– Can be solved via locking (we’ll see this next lecture!)

And	all	this	with…	Performance!!

CSC	261,	Fall	2017,	UR	

Ensuring Atomicity & Durability

• Atomicity:
– TXNs should either happen

completely or not at all
– If abort / crash during TXN, no effects

should be seen

ACID

TXN	1

TXN	2

No changes	
persisted

All changes	
persisted

We’ll	focus	on	how	to	accomplish	atomicity	(via	logging)

Crash	/	abort

• Durability:
• If	DBMS	stops	running,	changes	due	to	
completed	TXNs	should	all	persist

• Just	store	on	stable	disk

CSC	261,	Fall	2017,	UR	

The Log

• Is a list of modifications

• Log is duplexed and archived on stable storage.

• Can force write entries to disk
–A page goes to disk.

• All log activities are handled transparently by the
DBMS.

Assume	we	
don’t	lose	
it!

CSC	261,	Fall	2017,	UR	

Basic Idea: (Physical) Logging

• Record UNDO information for every update!
– Sequential writes to log
–Minimal info (diff) written to log

• The log consists of an ordered list of actions
– Log record contains:

<XID, location, old data, new data>

This	is	sufficient	to	UNDO	any	transaction!

CSC	261,	Fall	2017,	UR	

Why do we need logging for atomicity?

• Couldn’t we just write TXN to disk only once whole
TXN complete?
– Then, if abort / crash and TXN not complete, it has no effect-

atomicity!
– With unlimited memory and time, this could work…

• However, we need to log partial results of TXNs because of:
– Memory constraints (enough space for full TXN??)

– Time constraints (what if one TXN takes very long?)
We	need	to	write	partial	results	to	disk!

…And	so	we	need	a	log to	be	able	to	undo these	partial	results!

CSC	261,	Fall	2017,	UR	

3. ATOMICITY & DURABILITY VIA
LOGGING

CSC	261,	Fall	2017,	UR	

What you will learn about in this section

1. Logging:	An	animation	of	commit	protocols

CSC	261,	Fall	2017,	UR	

A Picture of Logging

CSC	261,	Fall	2017,	UR	

A picture of logging

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=0

B=5

A=0

T:	R(A),	W(A)	

CSC	261,	Fall	2017,	UR	

A picture of logging

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=1

B=5

A=0

T:	R(A),	W(A)	
A:	0à1

CSC	261,	Fall	2017,	UR	

A picture of logging

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=1

B=5

A=0

T:	R(A),	W(A)	
A:	0à1

Operation	
recorded	in	log	in	
main	memory!

CSC	261,	Fall	2017,	UR	

What is the correct way to write this all to disk?

• We’ll look at the Write-Ahead Logging (WAL) protocol

• We’ll see why it works by looking at other protocols which
are incorrect!

Remember:	Key	idea	is	to	ensure	durability	
while	maintaining	our	ability	to	“undo”!

CSC	261,	Fall	2017,	UR	

Write-Ahead Logging (WAL)
TXN Commit Protocol

CSC	261,	Fall	2017,	UR	

Transaction Commit Process

1. FORCE Write commit record to log

2. All log records up to last update from this TX are
FORCED

3. Commit() returns

Transaction	is	committed	once	commit	log	
record	is	on	stable	storage

CSC	261,	Fall	2017,	UR	

Incorrect Commit Protocol #1

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=1

B=5

A=0

T:	R(A),	W(A)	 A:	0à1

Let’s	try	committing	
before we’ve	written	
either	data	or	log	to	
disk…

If	we	crash	now,	is	T	
durable?

OK,	
Commit!

Lost	T’s	
update!

CSC	261,	Fall	2017,	UR	

Incorrect Commit Protocol #2

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=1

B=5

A=0

T:	R(A),	W(A)	 A:	0à1

Let’s	try	committing	
after we’ve	written	
data	but	before we’ve	
written	log	to	disk…

If	we	crash	now,	is	T	
durable?		Yes!		Except…

OK,	
Commit!

How	do	we	
know	whether	T	
was	
committed??

CSC	261,	Fall	2017,	UR	

Improved Commit Protocol (WAL)

CSC	261,	Fall	2017,	UR	

Write-ahead Logging (WAL) Commit Protocol

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=1

B=5

A=0

T:	R(A),	W(A)	 A:	0à1

This	time,	let’s	try	
committing	after we’ve	
written	log	to	disk	but	
before we’ve	written	
data	to	disk…	this	is	
WAL!

If	we	crash	now,	is	T	
durable?

OK,	
Commit!

CSC	261,	Fall	2017,	UR	

Write-ahead Logging (WAL) Commit Protocol

Data	on	Disk

Main	Memory

Log	on	Disk

T	

A=0

T:	R(A),	W(A)	

A:	0à1

This	time,	let’s	try	
committing	after we’ve	
written	log	to	disk	but	
before we’ve	written	
data	to	disk…	this	is	
WAL!

If	we	crash	now,	is	T	
durable?

OK,	
Commit!

USE	THE	LOG!

A=1

CSC	261,	Fall	2017,	UR	

Write-Ahead Logging (WAL)

• DB uses Write-Ahead Logging (WAL)
Protocol:

1. Must force log record for an update before the
corresponding data page goes to storage

2. Must write all log records for a TX before
commit

Each	update	is	
logged!	Why	
not	reads?

à Atomicity

à Durability

CSC	261,	Fall	2017,	UR	

Logging Summary

• If DB says TX commits, TX effect remains after
database crash

• DB can undo actions and help us with atomicity

• This is only half the story…

CSC	261,	Fall	2017,	UR	

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

CSC	261,	Fall	2017,	UR	

