
CSC 261/461 – Database Systems
Lecture 24

Fall 2017

CSC	261,	Fall	2017,	UR

TRANSACTIONS

CSC	261,	Fall	2017,	UR

Announcement

• Poster:
– You should have sent us the poster by yesterday. If you have not

done so, please send us asap.
–Make sure to send it for printing by tomorrow
– Read the guidelines for printing the poster on Piazza.

– https://piazza.com/class/j6it7h5r49y3t1?cid=123

CSC	261,	Fall	2017,	UR

Poster Suggestions

1. If you are using any figure that's not your own, you must cite
the source.
2. Ideally, we would like you to recreate the images. It's okay if
you use images from the paper itself. But make sure the
resolution is good (300 dpi). You can do that using Acrobat
Reader.
Go to preference->General->Fixed Resolution for Snapshot
too images. Select 300 dpi. Now take snapshots. The
resolution would be way better.

CSC	261,	Fall	2017,	UR

What we covered last time

• Transactions
• Properties of Transactions: ACID
• Logging:
– Atomicity & Durability
–Write-Ahead Logging (WAL) protocol

CSC	261,	Fall	2017,	UR

Today’s Lecture

1. Concurrency,	scheduling	&	anomalies

2. Locking:	Strict	2PL,	conflict	serializability,	deadlock	detection

3. Recovery

CSC	261,	Fall	2017,	UR

Concurrency & Locking

CSC	261,	Fall	2017,	UR

1. CONCURRENCY, SCHEDULING &
ANOMALIES

CSC	261,	Fall	2017,	UR

What you will learn about in this section

1. Interleaving	&	scheduling

2. Conflict	&	anomaly	types

CSC	261,	Fall	2017,	UR

Concurrency: Isolation & Consistency

• The DBMS must handle concurrency such that…

1. Isolation is maintained:
• Users must be able to execute each TXN as if they were

the only user
• DBMS handles the details of interleaving various TXNs

2. Consistency is maintained:
• TXNs must leave the DB in a consistent state
• DBMS handles the details of enforcing integrity constraints

CSC	261,	Fall	2017,	UR

ACID

ACID

Example- consider two TXNs:

T1: START TRANSACTION
UPDATE Accounts
SET Amt = Amt + 100
WHERE Name = ‘A’

UPDATE Accounts
SET Amt = Amt - 100
WHERE Name = ‘B’

COMMIT

T2: START TRANSACTION
UPDATE Accounts
SET Amt = Amt * 1.06

COMMIT

T1	transfers	$100	from	B’s	account	
to	A’s	account

T2	credits	both	accounts	with	a	6%	
interest	payment

CSC	261,	Fall	2017,	UR

Example- consider two TXNs:

T1	transfers	$100	from	B’s	
account	to	A’s	account

T2	credits	both	accounts	with	a	
6%	interest	payment

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

Time

We	can	look	at	the	TXNs	in	a	timeline	view- serial	execution:

CSC	261,	Fall	2017,	UR

Example- consider two TXNs:

T1	transfers	$100	from	B’s	
account	to	A’s	account

T2	credits	both	accounts	with	a	
6%	interest	payment

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

Time

The	TXNs	could	occur	in	either	order…	DBMS	allows!

CSC	261,	Fall	2017,	UR

Example- consider two TXNs:

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

Time

The	DBMS	can	also	interleave the	TXNs

T2	credits	A’s	account	with	6%	
interest	payment,	then	T1	
transfers	$100	to	A’s	account…

T2	credits	B’s	account	with	a	
6%	interest	payment,	then	T1	
transfers	$100	from	B’s	
account…

CSC	261,	Fall	2017,	UR

Example- consider two TXNs:

What	goes	wrong	here??

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

Time

The	DBMS	can	also	interleave the	TXNs

CSC	261,	Fall	2017,	UR

Three Types of Regions of Memory

1. Local: In our model each process in a
DBMS has its own local memory, where it
stores values that only it “sees”

2. Global: Each process can read from /
write to shared data in main memory

3. Disk: Global memory can read from /
flush to disk

4. Log: Assume on stable disk storage- spans
both main memory and disk…

Local Global

Main
Memory	
(RAM)

Disk

“Flushing to	disk”	=	
writing	to	disk.

1 2

3
Log	is	a	sequence
from	main	memory	->	
disk

4

CSC	261,	Fall	2017,	UR

Why Interleave TXNs?

• Interleaving TXNs might lead to anomalous
outcomes… why do it?

• Several important reasons:
– Individual TXNs might be slow-

• don’t want to block other users during!

– Disk access may be slow
• let some TXNs use CPUs while others accessing disk!

All	concern	large	differences	in	performance
CSC	261,	Fall	2017,	UR

Interleaving & Isolation

• The DBMS has freedom to interleave
TXNs

• However, it must pick an interleaving or
schedule such that isolation and
consistency are maintained

–Must be as if the TXNs had executed serially!

DBMS	must	pick	a	schedule	which	maintains	
isolation	&	consistency

“With	great	power	
comes	great	
responsibility”

ACID

CSC	261,	Fall	2017,	UR

Schedule

• A schedule is a list of actions
– Reading (R)
–Writing (W)
– Aborting (A)
– Committing (C)

• A schedule represents actual or potential execution
sequence.

CSC	261,	Fall	2017,	UR

Scheduling examples

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

A B

$50 $200

A B

$159 $106

A B

$159 $106

Starting	
Balance

Same	
result!

Serial	schedule	T1,T2:

Interleaved	schedule	A:

CSC	261,	Fall	2017,	UR

Scheduling examples

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

A B

$50 $200

A B

$159 $106

A B

$159 $112

Starting	
Balance

Different	
result	
than	
serial	
T1,T2!

Serial	schedule	T1,T2:

Interleaved	schedule	B:

CSC	261,	Fall	2017,	UR

Scheduling examples

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

A B

$50 $200

A B

$153 $112

A B

$159 $112

Starting	
Balance

Different	
result	
than	
serial	
T2,T1
ALSO!

Serial	schedule	T2,T1:

Interleaved	schedule	B:

CSC	261,	Fall	2017,	UR

Scheduling examples

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

This	schedule	is	different	than	any	
serial	order! We	say	that	it	is	not	

serializable

Interleaved	schedule	B:

CSC	261,	Fall	2017,	UR

Scheduling Definitions

• A serial schedule is one that does not interleave the
actions of different transactions

• A and B are equivalent schedules if, for any database
state, the effect on DB of executing A is identical to
the effect of executing B

• A serializable schedule is a schedule that is equivalent
to some serial execution of the transactions.

The	word	“some”	makes	
this	definition	powerful	&	
tricky!

CSC	261,	Fall	2017,	UR

Order of Execution
• Executing transactions in different order may produce

different results
– But all are presumed to be acceptable.
– DBMS makes no guarantees about which of them will be the

outcome of an interleaved execution.

CSC	261,	Fall	2017,	UR

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

Serial	schedule	T1,T2:

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

Serial	schedule	T2,T1:

A B

$50 $200

Starting	
Balance

A B

$153 $112

A B

$159 $106

Serializable?

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

Same	as	a	serial	
schedule	for	all	possible	
values	of	A,	B	=	
serializable

Serial	schedules:
A B

T1,T2 1.06*(A+100) 1.06*(B-100)

T2,T1 1.06*A	+	100 1.06*B	- 100

A B

1.06*(A+100) 1.06*(B-100)

CSC	261,	Fall	2017,	UR

Serializable?

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

Not	equivalent to	any	
serializable	schedule =	
not	serializable

Serial	schedules:
A B

T1,T2 1.06*(A+100) 1.06*(B-100)

T2,T1 1.06*A	+	100 1.06*B	- 100

A B

1.06*(A+100) 1.06*B	- 100

CSC	261,	Fall	2017,	UR

What else can go wrong with interleaving?

• Various anomalies which break isolation / serializability

–Often referred to by name…

• Occur because of / with certain “conflicts” between
interleaved TXNs

conflicts

CSC	261,	Fall	2017,	UR

The DBMS’s view of the schedule

T1

T2

A	+=	100 B	-=	100

A	*=	1.06 B	*=	1.06

T1

T2

R(A)

R(A)

W(A)

W(A) R(B) W(B)

R(B) W(B)

Each	action	in	the	TXNs	
reads	a	value	from	global	
memory and	then	writes	
one	back	to	it

Scheduling	order	
matters!

CSC	261,	Fall	2017,	UR

Conflict Types

• Thus, there are three types of
conflicts:
– Read-Write conflicts (RW)
– Write-Read conflicts (WR)
– Write-Write conflicts (WW)

Why	no	“RR	Conflict”?

Two	actions	conflict if	they	are	part	of	different	TXNs,	involve	the	
same	variable	/	object,	and	at	least	one	of	them	is	a	write

Interleaving	anomalies	occur	with	/	because	of	these	conflicts	
between	TXNs (but	these	conflicts	can	occur	without	causing	

anomalies!)

CSC	261,	Fall	2017,	UR

Occurring	with	/	because	of	a	RW	conflict

Classic Anomalies with Interleaved Execution

“Unrepeatable	read”:

T1

T2

R(A) R(A)

1. T1 reads some	data	from	A

2. T2 writes to	A

3. Then,	T1 reads	from	A	again	
and	now	gets	a	different	/	
inconsistent	value

R(A) W(A) C

Example:

Possible	issue:	Error	due	to	integrity	constraint

CSC	261,	Fall	2017,	UR

Unrepeatable Read (RW Conflicts)

• A unrepeatable read
manifests when
consecutive reads yield
different results due to a
concurring transaction
that has just updated the
record we’re reading.

• This is undesirable since
we end up using stale
data.

• This is prevented by
holding a shared lock
(read lock) on the read
record for the whole
duration of the current
transaction.

CSC	261,	Fall	2017,	UR

Occurring	with	/	because	of	a	WR	conflict

“Dirty	read”	/	Reading	uncommitted	data:

T1

T2

W(A) A

1. T1 writes some	data	to	A

2. T2 reads from	A,	then	
writes	back	to	A	&	commits

3. T1 then	aborts- now	T2’s	
result	is	based	on	an	
obsolete	/	inconsistent	
value

R(A) W(A) C

Example:

Classic Anomalies with Interleaved Execution

Problem:	The	value	of	A	written	by	T1	is	read	by	T2	before	T1	has	
completed	all	its	changes.

CSC	261,	Fall	2017,	UR

Dirty Read (Reading Uncommitted Data) (WR Conflicts)

• A dirty read happens when a
transaction is allowed to
read uncommitted changes
of some other running
transaction.

• This happens because there
is no locking preventing it.

• In the picture, you can see
that the second transaction
uses an inconsistent value as
the first transaction is
aborted.

CSC	261,	Fall	2017,	UR

Partially-lost	update:

T1

T2

W(A)

1. T1 blind	writes some	data	to	A

2. T2 blind	writes to	A	and	B

3. T1 then	blind	writes to	B;	now	
we	have	T2’s	value	for	A	and	
T1’s	value	for	B- not	equivalent	
to	any	serial	schedule!

Example:

W(B) C

W(A) CW(B)

Occurring	because	of	a	WW	conflict

Classic Anomalies with Interleaved Execution

Problem:	T1’s	update	(W(A))	is	lost.	T2’s	update	(W(B))	is	lost

CSC	261,	Fall	2017,	UR

Unrecoverable Schedule

CSC	261,	Fall	2017,	UR

T1

T2

R(A) A

W(A) C

1. T1 reads	and	writes	data	to	A

2. T2 reads	and	writes	data	to	A

3. 𝑇$	commits

4. 𝑇(aborts.	

W(A)

R(A)

In	a	recoverable	schedule,	transactions	commit	only	after	all	
transactions	whose	changes	they	read	commit.	

2. CONFLICT SERIALIZABILITY,
LOCKING & DEADLOCK

CSC	261,	Fall	2017,	UR

What you will learn about in this section

1. RECAP:	Concurrency

2. Conflict	Serializability

3. DAGs	&	Topological	Orderings

4. Strict	2PL

5. Deadlocks

CSC	261,	Fall	2017,	UR

Recall: Concurrency as Interleaving TXNs

• For our purposes,
having TXNs occur
concurrently means
interleaving their
component actions
(R/W)

We	call	the	particular	
order	of	interleaving	a	
schedule

T1
T2

R(A) R(B)W(A) W(B)

Serial	Schedule:

R(A) R(B)W(A) W(B)

T1
T2

R(A) R(B)W(A) W(B)

Interleaved	Schedule:

R(A) R(B)W(A) W(B)

CSC	261,	Fall	2017,	UR

Recall: “Good” vs. “bad” schedules

We	want	to	develop	ways	of	discerning	“good”	vs.	“bad”	schedules

Serial	Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved	Schedules:

Why?

CSC	261,	Fall	2017,	UR

Ways of Defining “Good” vs. “Bad” Schedules

• Recall from last time: we call a schedule serializable if it is
equivalent to some serial schedule

– We used this as a notion of a “good” interleaved schedule, since a
serializable schedule will maintain isolation & consistency

• Now, we’ll define a stricter, but very useful variant:

–Conflict serializability We’ll	need	to	define	
conflicts first..

CSC	261,	Fall	2017,	UR

Conflicts

Two	actions	conflict if	they	are	part	of	different	TXNs,	involve	the	
same	variable,	and	at	least	one	of	them	is	a	write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)W-R	Conflict

W-W	Conflict

CSC	261,	Fall	2017,	UR

Conflicts

Two	actions	conflict if	they	are	part	of	different	TXNs,	involve	the	
same	variable,	and	at	least	one	of	them	is	a	write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

All	“conflicts”!

CSC	261,	Fall	2017,	UR

Conflict Serializability

• Two schedules are conflict equivalent if:

– They involve the same actions of the same TXNs

– Every pair of conflicting actions of two TXNs are ordered in the
same way

• Schedule S is conflict serializable if S is conflict
equivalent to some serial schedule

Conflict	serializable	⇒ serializable
So	if	we	have	conflict	serializable,	we	have	consistency	&	isolation!	

CSC	261,	Fall	2017,	UR

Conflict serializable

CSC	261,	Fall	2017,	UR

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

Not Conflict serializable

CSC	261,	Fall	2017,	UR

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

Example of Serializable Schedule that is not Conflict Serializable

CSC	261,	Fall	2017,	UR

T1

T2

R(A) W(A)

W(A)

T3 W(A)

T1

T2

R(A) W(A)

W(A)

T3 W(A)

Serializable

But
Not	Conflict	
Serializable

Recall: “Good” vs. “bad” schedules

Conflict	serializability	also	provides	us	with	an	operative	
notion	of	“good”	vs.	“bad”	schedules!

Serial	Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved	Schedules:

Note	that	in	the	“bad”	schedule,	the	
order	of	conflicting	actions	is	
different	than	the	above	(or	any)	
serial	schedule!

CSC	261,	Fall	2017,	UR

Note: Conflicts vs. Anomalies

• Conflicts are things we talk about to help us characterize
different schedules
– Present in both “good” and “bad” schedules

• Anomalies are instances where isolation and/or consistency
is broken because of a “bad” schedule
–We often characterize different anomaly types by what types of

conflicts predicated them

CSC	261,	Fall	2017,	UR

The Conflict / Precedence / Serializability Graph

• Let’s now consider looking at conflicts at the TXN level

• Consider a graph where the nodes are TXNs, and there is
an edge from Ti àTj if any actions in Ti precede and
conflict with any actions in Tj

T1 T2

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

CSC	261,	Fall	2017,	UR

Serial	Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved	Schedules:

What can we say about “good” vs. “bad” conflict
graphs?

A	bit	complicated…

CSC	261,	Fall	2017,	UR

Serial	Schedule:

X

Interleaved	Schedules:

T1 T2 T1 T2

T1 T2

Theorem:	Schedule	is	conflict	serializable if	and	
only	if	its	conflict	graph	is	acyclic

Simple!

What can we say about “good” vs. “bad” conflict
graphs?

CSC	261,	Fall	2017,	UR

Let’s unpack this notion of acyclic conflict
graphs…

CSC	261,	Fall	2017,	UR

DAGs & Topological Orderings

• A topological ordering of a directed graph is a linear
ordering of its vertices that respects all the directed edges

• A directed acyclic graph (DAG) always has one or more
topological orderings
– (And there exists a topological ordering if and only if there are no

directed cycles)

CSC	261,	Fall	2017,	UR

DAGs & Topological Orderings

• Ex: What is one possible topological ordering here?

1

32

0

Ex:	0,	1,	2,	3		(or:	0,	1,	3,	2)

CSC	261,	Fall	2017,	UR

DAGs & Topological Orderings

• Ex: What is one possible topological ordering here?

1

32

0

There	is	none!

CSC	261,	Fall	2017,	UR

Connection to conflict serializability

• In the conflict graph, a topological ordering of nodes
corresponds to a serial ordering of TXNs

• Thus an acyclic conflict graph à conflict serializable!

Theorem:	Schedule	is	conflict	serializable if	and	
only	if	its	conflict	graph	is	acyclic

CSC	261,	Fall	2017,	UR

How to deal with concurrency

Locking

CSC	261,	Fall	2017,	UR

Strict Two-Phase Locking

• We consider locking- specifically, strict two-phase locking- as
a way to deal with concurrency, because is guarantees
conflict serializability (if it completes- see upcoming…)

• Also (conceptually) straightforward to implement, and
transparent to the user!

CSC	261,	Fall	2017,	UR

Strict Two-phase Locking (Strict 2PL) Protocol:

• Rule 1:
– If a transaction T wants to:
• Read an object, it obtains a shared (S) lock on the object
• Write an object, it obtains an exclusive (X) lock on the object

• Rule 2:
– All locks held by a transaction are released when transaction is

completed.

CSC	261,	Fall	2017,	UR

If	a	TXN	holds	a	lock	X ,	no	other	TXN	can	get	a lock	(S or	X)	
on	that	object.

If	a	TXN	holds	a	lock	S ,	no	other	TXN	can	get	a lock		X on	that	
object.

Strict 2PL

Theorem: Strict	2PL	allows	only	schedules	
whose	dependency	graph	is	acyclic

Therefore,	Strict	2PL	only	allows	conflict	
serializable	⇒ serializable	schedules

Proof	Intuition:	In	strict	2PL,	if	there	is	an	edge	Ti à Tj (i.e.	Ti and	Tj
conflict)	then	Tj needs	to	wait	until	Ti is	finished	– so	cannot	have	an	edge	
Tj à Ti

CSC	261,	Fall	2017,	UR

Strict 2PL

• If a schedule follows strict 2PL and locking, it is conflict
serializable…

–…and thus serializable
–…and thus maintains isolation & consistency!

• Not all serializable schedules are allowed by strict 2PL.

• So let’s use strict 2PL, what could go wrong?

CSC	261,	Fall	2017,	UR

DEADLOCK

CSC	261,	Fall	2017,	UR

Deadlock Detection: Example

First,	T1 requests	a	shared	lock	
on	A	to	read	from	it

T1
T2

S(A) R(A)

Waits-for	graph:

T1 T2

CSC	261,	Fall	2017,	UR

Deadlock Detection: Example

Next,	T2 requests	a	shared	lock	
on	B	to	read	from	it

T1
T2 S(B) R(B)

S(A) R(A)

Waits-for	graph:

T1 T2

CSC	261,	Fall	2017,	UR

Deadlock Detection: Example

T2 then	requests	an	exclusive	
lock	on	A	to	write	to	it- now	T2
is	waiting	on	T1…

T1
T2 X(A)S(B) R(B)

S(A) R(A)

Waits-for	graph:

T1 T2
W(A)Waiting

…

CSC	261,	Fall	2017,	UR

Deadlock Detection: Example

Finally,	T1 requests	an	
exclusive	lock	on	B	to	write	to	
it- now	T1 is	waiting	on	T2…	
DEADLOCK!

T1
T2

X(B)

X(A)S(B) R(B)

S(A) R(A)

Waits-for	graph:

T1 T2
W(A)

W(B)

Cycle	=	
DEADLOCK

Waiting
…

Waiting
…

CSC	261,	Fall	2017,	UR

Performance of Locking

• Resolve conflicts between transactions and use two basic
mechanisms:
– Blocking
– Aborting

• Both incurs performance penalty.
– Blocking (Other transactions need to wait)
– Aborting (Wastes the work done thus far)

• Deadlock:
– Extreme instance of blocking
– A set of transactions are forever blocked unless one of the

deadlocked transactions is aborted by the DBMS

CSC	261,	Fall	2017,	UR

Deadlocks

• Deadlock: Cycle of transactions waiting for locks to be
released by each other.

• Two ways of dealing with deadlocks:

1. Deadlock prevention

2. Deadlock avoidance

CSC	261,	Fall	2017,	UR

Deadlock Prevention

• Use timestamp ordering mechanism of transactions in order
to predetermine a deadlock situation.

• Wait-Die Scheme
• Wound-Wait Scheme

CSC	261,	Fall	2017,	UR

Timestamp Ordering

• Each transaction is assigned a unique
increasing timestamp

• Earlier transactions receives
a smaller timestamp

• T1 (old) , T2, T3 (new), ...

• Notation: Old Transaction 𝑇*+, New
Transaction 𝑇-./

CSC	261,	Fall	2017,	UR

𝑇*+,

𝑇-./

Wait-Die

𝑇*+,	 is allowed towait for	𝑇-./	
𝑇-./	 will die when	it waits for	𝑇*+,

CSC	261,	Fall	2017,	UR

X Wait

DieX

Requests	
Lock

Requests	
LockHolds	Lock

Holds	Lock

X

Wound Wait

𝑇*+,	 will	wound	𝑇-./	
𝑇-./	waits	for	𝑇*+,

CSC	261,	Fall	2017,	UR

X

Wait

Wound

X

Requests	
Lock

Requests	
LockHolds	Lock

Holds	Lock

X

Deadlock Avoidance

• Waits-for graph:
– For each transaction entering into

the system, a node is created.
– When a transaction Ti requests for

a lock on an item, say X, which is
held by some other transaction Tj,
a directed edge is created from
Ti to Tj.

– If Tj releases item X, the edge
between them is dropped and
Ti locks the data item.

• The system maintains this wait-
for graph for every transaction
waiting for some data items
held by others. The system
keeps checking if there's any
cycle in the graph.

CSC	261,	Fall	2017,	UR

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

• https://vladmihalcea.com/2014/01/05/a-beginners-guide-to-
acid-and-database-transactions/

CSC	261,	Fall	2017,	UR

