CSC 261/461 – Database Systems Lecture 7

Fall 2017

Announcement

Project i Milestone 2 due date: : 10/06/2017

The ER (Entity-Relationship) Model

Agenda

- 1. High-level motivation for the E/R model
- 2. Entities
- 3. Relations
- 4. E/R Model

Database Design

- Database design: Why do we need it?
 - Agree on structure of the database before deciding on a particular implementation
- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain
 - How to achieve good designs
- Several formalisms exist
 - We discuss one flavor of E/R diagrams

1. Requirements Analysis

2. Conceptual Design

3. Logical, Physical, Security, etc.

1. Requirements analysis

- What is going to be stored?
- How is it going to be used?

Technical and nontechnical people are involved

- What are we going to do with the data?
- Who should access the data?

1. Requirements Analysis

2. Conceptual Design

3. Logical, Physical, Security, etc.

2. Conceptual Design

- A <u>high-level description</u> of the database
- Sufficiently <u>precise</u> that technical people can understand it
- But, not so precise that non-technical people can't participate

This is where E/R fits in.

1. Requirements Analysis

2. Conceptual Design

3. Logical, Physical, Security, etc

3. Implementation:

- Logical Database Design
- Physical Database Design
- Security Design

E/R is a *visual syntax* for DB design which is *precise enough* for technical people, but *abstracted enough* for non-technical people

The Requirements Analysis Stage

• Sources of requirements

- User Interviews

- Forms
- Reports
- Queries
- Use Cases
- Observation

Requirements Become the E-R Data Model

- After the requirements have been gathered, they are transformed into an Entity Relationship (E-R) Data Model
- E-R Models consist of
 - I. Entities
 - 2. Attributes
 - a) Identifiers (Keys)
 - b) Non-key attributes
 - 3. Relationships

1. E/R BASICS: ENTITIES & RELATIONS

Interlude: Impact of the ER model

- The E/R model is one of the most cited articles in Computer Science
 - Author: Peter Pin-Shan Chen

The entity-relationship model—toward a unified view of data PPS Chen - ACM Transactions on Database Systems (TODS), 1976 - dl.acm.org Abstract A data model, called the entity-relationship model, is proposed. This model incorporates some of the important semantic information about the real world. A special diagrammatic technique is introduced as a tool for database design. An example of Cited by 10395 Related articles All 97 versions Cite Save More

From Google Scholar

Entities and Entity Sets

- Entities & entity sets are the primitive unit of the E/R model
 - Entities or (entity instances) are the individual objects, which are members of entity sets
 - Ex: A specific person or Item
 - Entity sets or (entity classes) are the classes or types of objects in our model
 - Ex: Person, Item
 - These are what is shown in E/R diagrams as rectangles
 - Entity sets represent the sets of all possible entities

Entities vs. Entity Sets

Entities and Entity Sets

- An entity set has attributes
 - Represented by ovalsattached to an entity set

Shapes <u>are</u> important. Colors <u>are</u> <u>not</u>.

Keys

• A <u>key</u> is a **minimal** set of attributes that uniquely identifies an entity.

The E/R model forces us to designate a single **<u>primary</u>** key, though there may be multiple candidate keys

Relationships

- A relationship connects two or more entity sets.
- It is represented by a diamond, with lines to each of the entity sets involved.
- The *degree* of the relationship defines the number of entity classes that participate in the relationship
 - Degree 1 is a unary relationship
 - Degree 2 is a binary relationship
 - Degree 3 is a ternary relationship

Conceptual Unary Relationship

Conceptual Binary Relationship

Conceptual Ternary Relationship

The R in E/R: Relationships

• E, R and A together:

• A mathematical definition:

– Let A, B be sets

•
$$A = \{1,2,3\}, B = \{a,b,c,d\}$$

• A mathematical definition:

- Let A, B be sets
 - $A = \{1,2,3\}, B = \{a,b,c,d\}$
- A x B (the *cross-product*) is the set of all pairs (a,b)
 - $A \times B = \{(1,a), (1,b), (1,c), (1,d), (2,a), (2,b), (2,c), (2,d), (3,a), (3,b), (3,c), (3,d)\}$

• A mathematical definition:

- Let A, B be sets
 - $A = \{1,2,3\}, B = \{a,b,c,d\},$
- A x B (the *cross-product*) is the set of all pairs (a,b)
 - $A \times B = \{(1,a), (1,b), (1,c), (1,d), (2,a), (2,b), (2,c), (2,d), (3,a), (3,b), (3,c), (3,d)\}$

•
$$R = \{(1,a), (2,c), (2,d), (3,b)\}$$

- A mathematical definition:
 - Let A, B be sets
 - A x B (the *cross-product*) is the set of all pairs
 - A relationship is a subset of A

• Makes is relationship- it is a subset of Product × Company:

A <u>relationship</u> between entity sets P and C is a subset of all possible pairs of entities in P and C, with tuples uniquely identified by P and C's keys

Company

name GizmoWorks GadgetCorp

Product

<u>name</u>	category	price
Gizmo	Electronics	\$9.99
GizmoLite	Electronics	\$7.50
Gadget	Toys	\$5.50

A <u>relationship</u> between entity sets P and C is a subset of all possible pairs of entities in P and C, with tuples uniquely identified by P and C's keys

Company

name GizmoWorks GadgetCorp

Product

<u>name</u>	category	price
Gizmo	Electronics	\$9.99
GizmoLite	Electronics	\$7.50
Gadget	Toys	\$5.50

A <u>relationship</u> between entity sets P and C is a subset of all possible pairs of entities in P and C, with tuples uniquely identified by P and C's keys

Company C × Product P

<u>C.name</u>	<u>P.name</u>	P.category	P.price
GizmoWorks	Gizmo	Electronics	\$9.99
GizmoWorks	GizmoLite	Electronics	\$7.50
GizmoWorks	Gadget	Toys	\$5.50
GadgetCorp	Gizmo	Electronics	\$9.99
GadgetCorp	GizmoLite	Electronics	\$7.50
GadgetCorp	Gadget	Toys	\$5.50

Company

name GizmoWorks GadgetCorp

Product

<u>name</u>	category	price
Gizmo	Electronics	\$9.99
GizmoLite	Electronics	\$7.50
Gadget	Toys	\$5.50

A <u>relationship</u> between entity sets P and C is a subset of all possible pairs of entities in P and C, with tuples uniquely identified by P and C's keys

Company C × Product P

<u>C.name</u>	P.name	P.category	P.price
GizmoWorks	Gizmo	Electronics	\$9.99
GizmoWorks	GizmoLite	Electronics	\$7.50
GizmoWorks	Gadget	Toys	\$5.50
GadgetCorp	Gizmo	Electronics	\$9.99
GadgetCorp	GizmoLite	Electronics	\$7.50
GadgetCorp	Gadget	Toys	\$5.50

Makes

<u>C.name</u>	P.name
GizmoWorks	Gizmo
GizmoWorks	GizmoLite
GadgetCorp	Gadget

Relationships and Attributes

Relationships may have attributes as well.

Types of Relationships

Conceptual Crow's Foot Relationship Symbols

One ——— Many ———

Many-Many Relationships

- Focus: binary relationships, such as Sells between Seller and Buyer.
- In a *many-many* relationship, an entity of either set can be connected to many entities of the other set.
 - E.g., a seller sells many items; a buyer can buy many items too.

In Pictures:

many-many

Many-One Relationships

- Some binary relationships are *many -one* from one entity set to another.
- Each entity of the first set is connected to at most one entity of the second set.
- But an entity of the second set can be connected to zero, one, or many entities of the first set.
- E.g.: One buyer can have multiple order number, but one order can be bought by only one buyer.

In Pictures:

many-one

One-One Relationships

- In a *one-one* relationship, each entity of either entity set is related to at most one entity of the other set.
- Example: Relationship president between entity country and person.
 - A person can be the president of only one country. One country can have only one president.

In Pictures

Maximum Cardinality

- Relationships are named and classified by their cardinalities, which is a word that means *count* (as in the number of items in a set)
- Each of the three types of binary relationship shown previously has a different *maximum cardinality*
- Maximum cardinality is the maximum number of entity instances that can participate in a relationship instance
 - One, many, or some other positive fixed number

Minimum Cardinality

- Minimum cardinality is the minimum number of entity instances that must participate in a relationship instance
- These values typically assume a value of zero (optional) or one (mandatory)

Crow's Foot Symbols with Cardinalities

Cardinality Example

- Maximum cardinality is many for Order and one for Customer
- Minimum cardinality is one for both Customer and Order
 - Each customer can place one or more orders
 - Each order is associated with one and only one customer

Entity-Relationship Diagrams

- The diagrams in previous slides are called entityrelationship diagrams
 - Entities represented by rectangles
 - Relationships represented by lines
 - Cardinalities represented by Crow's Foot symbols

HAS-A Relationships

- The relationships in the previous slides are called HAS-A relationships
- The term is used because each entity instance *has a* relationship to a second entity instance
 - An employee has a locker
 - A locker has an employee
- There are also IS-A relationships

DRAW AN E/R DIAGRAM FOR FOOTBALL

Use the following simplified model of a football season (concepts to include are underlined):

Teams play each other in Games. Each pair of teams can play each other multiple times

<u>Players</u> belong to Teams

A Game is made up of <u>Plays</u> that result in a yardage gain/loss, and potentially a touchdown

A Play will contain either a <u>Pass</u> from one player to another, or a <u>Run</u> by one player

Acknowledgement

- Some of the slides in this presentation are taken from the slides provided by the authors.
- Many of these slides are taken from cs145 course offered by Stanford University.
- Thanks to YouTube, especially to <u>Dr. Daniel Soper</u> for his useful videos.