

An​ ​Analysis​ ​and​ ​Overview​ ​of​ ​MongoDB​ ​Security

Matthew​ ​Trudeau
University​ ​of​ ​Rochester

Department​ ​of​ ​Data​ ​Science
mtrudeau@ur.rochester.edu

Abstract
NoSQL databases are becoming increasingly popular as the
scale of data dealt with has grown tremendously. As
NoSQL database technologies increase in popularity, their
probability of being a target of hacking increases as well.
Unfortunately, NoSQL databases are susceptible to many
of the same hacking methods that SQL databases are
vulnerable to such as injections. In this paper, we focus our
attention on MongoDB, a document-based NoSQL
database. MongoDB has a number of security features
built-in including authorization, authentication, and
TLS/SSL encryption. Failure to utilize these security
features in a MongoDB deployment can result in major
security risks as demonstrated by the data ransoms in
January 2017. These security features will be analyzed in
terms of effectiveness in fighting off an attack and
restrictions on database performance. Additionally, this
paper will detail pitfalls of MongoDB security and future
security measures that could be added to the current
open-source​ ​framework.

1.​ ​​ ​​ ​Introduction
The popularity of relational databases over the years has
led to a problem described as big data. Since relational
databases fail to scale well on large datasets, companies
have turned to alternative data storage methods such as
NoSQL. NoSQL databases were designed almost
exclusively for speed and scalability. The rise of NoSQL
has allowed companies like Google and Facebook to ensure
efficiency​ ​of​ ​their​ ​systems​ ​in​ ​the​ ​big​ ​data​ ​era.

Unfortunately, this need for scalability and speed has
resulted in security being an afterthought, with many
NoSQL technologies susceptible to hacking. Specifically,
the focus of this paper turns to the open source NoSQL
document oriented database MongoDB. Before
implementing a database like MongoDB, companies must
be aware of the security risks involved. With the amount of
data being collected now higher than ever, security and
privacy of this data is absolutely vital. If a company suffers
a data breach, the result is ostensibly losing the trust of
customers​ ​which​ ​would​ ​inevitably​ ​lead​ ​to​ ​decreased​ ​profits.

Over the years, MongoDB has added numerous built-in
security features. However, it is the responsibility of the
database administrator to take advantage of what
MongoDB provides. Using these security features will
greatly​ ​increase​ ​the​ ​likelihood​ ​that​ ​data​ ​is​ ​protected.

Joshua​ ​Kolodny
University​ ​of​ ​Rochester

Department​ ​of​ ​Data​ ​Science
jkolodn2@ur.rochester.edu

2.​ ​​ ​​ ​​ ​Security​ ​Failures
2.1​ ​​ ​NoSQL
Like relational databases, NoSQL database technologies
are susceptible to hacking, injection, and deletion based on
security failures, perhaps even more so. As NoSQL
technologies were first being developed and used, they
lacked adequate security functionality.​[1] While security
measures have improved recently, NoSQL database
technologies are still susceptible to many of the same
problems mentioned. Additionally, as NoSQL is a blanket
phrase used to refer to various different database
technologies, the problems that NoSQLs face can be unique
and​ ​varied.

2.2​ ​​ ​MongoDB
MongoDB’s notable security problems are “lack of
encryption support for data files, weak authentication
between clients and servers, simple authentication, and
vulnerability​ ​to​ ​SQL​ ​injection​ ​and​ ​DOS​ ​attack.”​[2]

One of the problems mentioned, of weak authentication
between clients and servers, was responsible for a data
breach in early 2017 which saw roughly 30,000 MongoDB
instances exposed. While the issue that caused this data
breach is by no means intractable, and was due to a default
setting not being changed by users, there are other issues
that​ ​seem​ ​more​ ​difficult​ ​to​ ​deal​ ​with.

For example, MongoDB databases are susceptible to both
JavaScript Injection and HTTP trespassing. HTTP
trespassing can be executed by making specific alterations
to the source code of a website downloaded by a browser.
This can be accomplished if a hacker has access to
information about the MongoDB database: the database
name, collection name, port number, username, and
password.​[3] The JavaScript Injections are accomplished by
hiding JavaScript source code within a MongoDB query
statement. This can result in the query appearing to run
once,​ ​but​ ​actually​ ​running​ ​several​ ​times.

3.​ ​​ ​​ ​MongoDB​ ​Security​ ​Features
This section introduces the built-in MongoDB (version 3.4)
security features that are used to prevent popular database
attacks: authentication, authorization, encryption, auditing,
network exposure, and injection prevention. As noted
below, not all of these features are completely effective. At
the​ ​very​ ​least,​ ​many​ ​result​ ​in​ ​decreased​ ​database​ ​speed.

3.1​ ​​ ​Authentication
Authentication of a user is vital in any database
implementation. Determining who the user is allows for
authorization and other security measures to be applied
appropriately. MongoDB uses SCRAM-SHA-1 as the
default method for user authentication. The Internet
Engineering Task Force (IETF) established
SCRAM-SHA-1 to formally define how to securely
implement a challenge-response mechanism that
authenticates​ ​users​ ​with​ ​a​ ​password.​[6]

MongoDB previously defaulted to authorizing users with
MongoDB Challenge and Response (MongoDB-CR).
SCRAM-SHA-1 has a number of advantages over
MongoDB-CR such as a tunable work factor, per-user
random salts, a ​stronger hash function (SHA-1 rather than
MD5), and bidirectional authentication of the server and
client. It is absolutely vital that MongoDB implementations
of versions before 3.0 update to the latest version to get
these upgrades. Specifically, we will look closer at the hash
functions​ ​SHA-1​ ​and​ ​MD5.

MD5 has been known to suffer from vulnerabilities since
1996.​[5] Over the years, even more security flaws of MD5
have been found including the potential for collisions.
While MD5 is a faster hash function than SHA-1, SHA-1 is
widely​ ​accepted​ ​as​ ​being​ ​more​ ​secure.

However, it is important to understand that SHA-1 is still
vulnerable to attacks. In 2005, SHA-1 was also found to
suffer from collisions and will not survive attacks from
well funded opponents.​[5] SHA-1 has since been taken over
by the prefered SHA-2 and SHA-3 cryptographic functions.
There are open source libraries to help programmers apply
SHA-3 to their MongoDB implementation. However, it is
not​ ​built-in.

Choosing the best built-in MongoDB authentication
method really depends on the specific situation. For
large-scale organizational use of MongoDB, investing in
the MongoDB Enterprise edition seems to be a reasonable
option. The enterprise edition of MongoDB unlocks more
authentication methods such as ​Kerberos Authentication,
and​ ​LDAP​ ​Proxy​ ​Authentication.

3.2​ ​​ ​Authorization
Authentication is a prerequisite for authorization. Now that
unique instances of users can be reliably identified, each
user can be assigned predefined roles. Roles are used to
grant​ ​users​ ​access​ ​to​ ​different​ ​MongoDB​ ​resources.​[3]

Roles can be defined in the admin database and describe
what privileges all users have over certain databases and
collections. Roles can inherit privileges from other roles to
expand on legal user actions. Database administrators have
the responsibility of creating new users and assigning them
roles. Administrators have the power of using MongoDB
built​ ​in​ ​roles​ ​or​ ​can​ ​create​ ​roles​ ​for​ ​a​ ​specific​ ​purpose.

It is vital that database administrators take full advantage of
assigning roles. Limiting user behavior will limit the
danger occurring from a single account being hacked. A
hacked account only presents a disastrous outcome if that
user​ ​is​ ​a​ ​database​ ​administrator.

Fig.​ ​1:​ ​A​ ​visualization​ ​of​ ​the​ ​exchange​ ​of​ ​messages
during​ ​an​ ​authentication​ ​session.​[7]

3.3​ ​​ ​Encryption
MongoDB supports two different kinds of encryption. By
default, it uses AES256-CBC, which is the Advanced
Encryption Standard running in Cipher Block Chaining
mode. Additionally, MongoDB supports AES256-GCM,
which is known as Galois/Counter Mode. Two different
types of keys are used in the data encryption process:
master keys and database keys. The data within the
database is encrypted using the database keys, and the
database​ ​keys​ ​are​ ​in​ ​turn​ ​encrypted​ ​with​ ​the​ ​master​ ​key.

MongoDB does not offer any in-house features for
application level encryption. To encrypt each field or
document, MongoDB documentation suggests writing a
custom encryption/decryption methods or using solutions
created​ ​by​ ​one​ ​of​ ​their​ ​partners.

MongoDB also supports transport encryption, such as
TLS/SSL, to encrypt network traffic. The implementation
of TLS/SSL makes use of OpenSSL libraries, only using
SSL​ ​ciphers​ ​that​ ​use​ ​a​ ​key​ ​that​ ​is​ ​at​ ​least​ ​128-bit​ ​in​ ​length.

Fig.​ ​2:​ ​A​ ​conceptual​ ​model​ ​of​ ​how​ ​AES-CBC​ ​operates.​[8]

3.4​ ​​ ​Auditing
Auditing is arguably the most important piece of security
because it allows database administrators to track the
history of the database. An auditing feature built-in to
MongoDB enterprise allows administrators to log queries
made against the database. Tracking system activity in this
way is useful for a variety of reasons, such as identifying
malicious attacks due to multiple failed authentication
attempts.

The traffic of a database can vary greatly. To enhance the
readability of these logs, MongoDB can be configured to
filter events and write them to different outputs. These
events can be written to the console, the syslog, a JSON
file,​ ​or​ ​a​ ​BSON​ ​file.

Some operations that the MongoDB auditing feature will
log includes schema changes (DDL), authentication
attempts, authorization changes, and CRUD (create, read,
update, delete) operations. The data logged for a certain
event can be customized and can include the action being
performed, the parameters sent, a timestamp, the user, the
user​ ​role(s),​ ​and​ ​more.

By default, MongoDB does ignore some operations
completely and does not log them. It is recommended,
however,​ ​to​ ​use​ ​the​ ​auditing​ ​system​ ​to​ ​log​ ​every​ ​event.

The auditing system writes events to an in-memory buffer
and periodically writes this buffer to disk. During a single
connection, MongoDB promises that if an event has been
logged then this means all previous events in that
connection​ ​has​ ​been​ ​logged.

In case of a hard shutdown, special treatment of DDL
events are necessary to maintain a reliable database history.
To maintain a durable state of the database, DDL events
cause all events in that connection to be immediately
written​ ​to​ ​disk.

3.5​ ​​ ​Network​ ​Exposure
MongoDB should be implemented such that network
exposure is limited. This is done by running MongoDB on
a trusted network and only allowing trusted clients to
interface​ ​with​ ​the​ ​network.

By default, MongoDB follows the best practice of limiting
network access to localhost. In application, this
implementation is not common since databases tend to be
accessed remotely. However, this is an important starting
point because authentication, authorization, and other
security measures should be established prior to making the
MongoDB​ ​instance​ ​available​ ​to​ ​the​ ​public.

Once MongoDB is being hosted on a network and listening
for connection attempts, it is vital that only trusted
connections to that network are allowed. Use of firewalls
and VPN can limit network traffic to only trusted users. It
is also recommended that the port used to listen for
connections is changed from the default, which is 27017.

Automated attacks crawl through networks attempting to
connect​ ​to​ ​MongoDB​ ​deployments​ ​using​ ​the​ ​default​ ​port.

Even if a malicious user accesses the network,
authentication and authorization security implementations
should prevent an attacker from completing a disastrous
attack​ ​such​ ​as​ ​a​ ​data​ ​ransom.​[3]

3.6​ ​​ ​Injection​ ​Prevention
Using injection methods as a means of hacking is possible
in MongoDB. As mentioned in the security failures section,
injections can occur in MongoDB. However, not all types
of​ ​injections​ ​are​ ​possible​ ​due​ ​built-in​ ​security​ ​features.

One example of this is the fact that SQL injections are not
possible. This is because, when queries are assembled in
MongoDB, they build BSON objects instead of a string.
Nevertheless, injections are a still possible—both in the
form​ ​of​ ​HTTP​ ​trespassing​ ​and​ ​JavaScript​ ​Injections.

The MongoDB documentation presents ways in which
these injections can be avoided. First, by being mindful of
which MongoDB operations allow for the running of
arbitrary JavaScript expressions: $where, mapReduce, and
group; second, by using the “CodeWScope” mechanism if
user-supplied​ ​values​ ​must​ ​be​ ​passed​ ​a​ ​$where​ ​clause.

Fig.​ ​3:​ ​A​ ​schematic​ ​showing​ ​how​ ​the​ ​process​ ​of​ ​injection
hacking​ ​proceeds.​[9]

4.​ ​​ ​​ ​Future​ ​Improvements
Of the built-in security features detailed in this paper, there
are​ ​clear​ ​issues​ ​with​ ​authentication​ ​and​ ​encryption.

The MongoDB authentication method defaults to a
relatively costly hashing algorithm, SHA-1, which is
proven to break under certain conditions. Implementing
SHA-3 or paying for the enterprise edition are possible
options to fix this. However, it seems evident that the
primary security risk for MongoDB is that database
administrators do not configure database security
appropriately​ ​if​ ​at​ ​all.

Defaulting to an effective, free, authentication method is
necessary if MongoDB wants to maintain its popularity.
Otherwise, hacking user accounts will eventually become
commonplace for the free deployment. Database
administrators will inevitably seek alternative data storage
options.

Finally, application level encryption must be implemented
independent of MongoDB instances. To avoid interception
of data, all fields must be encrypted at every step. As
mentioned previously, database security best practices are
commonly ignored or left until the end. Application level
encryption should be built-in to encourage programmers to
easily​ ​take​ ​advantage​ ​of​ ​the​ ​feature.

As one of the most popular NoSQL database management
systems available, MongoDB should default to database
security best practices. Of course, it is still up to the
discretion of the database administrator to implement
built-in features. Please note, implementing all built-in
security​ ​features​ ​is​ ​a​ ​must​ ​for​ ​any​ ​successful​ ​database.

5.​ ​​ ​​ ​Conclusion
It would seem that MongoDB’s built in features provide
adequate security, especially for deployments running on
the enterprise edition. However, there are still two main
issues that need to be addressed: first, the use of SHA-1,
which has been known to be vulnerable to attacks for over
a decade; second, the absence of built-in application level
encryption. These issues notwithstanding, MongoDB
(especially its enterprise edition) seems to be a secure and
attractive​ ​option​ ​for​ ​big​ ​data​ ​needs.

The hacks that occured in early 2017 were due to
MongoDB’s questionable selection of default settings, and
also due to users not following best practices. With that in
mind, MongoDB users should be motivated to make use of
the security features offered, and to ensure that a database’s
settings are set up appropriately with respect to their
security​ ​needs.

However, a better way to ensure compliance with the best
security practices of MongoDB would be to have the
security features as “opt-out” instead of “opt-in.” If all
security features were on by default, speed may suffer, but
the​ ​security​ ​of​ ​general​ ​deployments​ ​would​ ​improve.

Additionally, DBAs may need to turn off these default
settings to improve performance. As a result, they would
likely become familiar with all of the security features
available to them. Alternatively, as the default settings are
now, DBAs have no performance-related incentive to learn
about​ ​the​ ​built-in​ ​security​ ​features.

6.​ ​​ ​​ ​References
[1]​ ​Hou,​ ​Boyu,​ ​et​ ​al.​ ​“Towards​ ​Analyzing​ ​MongoDB
NoSQL​ ​Security​ ​and​ ​Designing​ ​Injection​ ​Defense
Solution.”​ ​​2017​ ​IEEE​ ​3rd​ ​International​ ​Conference​ ​on​ ​Big
Data​ ​Security​ ​on​ ​Cloud​,​ ​July​ ​2017.
[2]​ ​Sahafizadeh,​ ​Ebrahim,​ ​and​ ​Mohammad​ ​Nematbakhsh.
“A​ ​Survey​ ​on​ ​Security​ ​Issues​ ​in​ ​Big​ ​Data​ ​and​ ​NoSQL.”
Advances​ ​in​ ​Computer​ ​Science:​ ​an​ ​International​ ​Journal​,
vol.​ ​4,​ ​no.​ ​4,​ ​July​ ​2015,​ ​pp.​ ​68–72.
[3]​ ​“Security.”​ ​​Security​ ​—​ ​MongoDB​ ​Manual​ ​3.4​,
MongoDB,​ ​Inc,​ ​docs.mongodb.com/manual/security/.
[4]​ ​​Al-Ithawi,​ ​O.​ ​​A​ ​Security​ ​Comparison​ ​between​ ​MySQL
and​ ​MongoDB​.​ ​n.d.​ ​TS.
[5]​ ​Stevens,​ ​Marc,​ ​et​ ​al.​ ​“SHAttered.”​ ​​SHAttered​,​ ​Google
Research,​ ​shattered.it/.
[6]​ ​“Salted​ ​Challenge​ ​Response​ ​Authentication​ ​Mechanism
(SCRAM)​ ​SASL​ ​and​ ​GSS-API​ ​Mechanisms.”​ ​​IETF​ ​Tools​,
tools.ietf.org/html/rfc5802.
[7]​ ​“Improved​ ​Password-Based​ ​Authentication​ ​in
MongoDB​ ​3.0:​ ​SCRAM​ ​Explained​ ​-​ ​Pt.​ ​1.”​ ​​MongoDB​,
www.mongodb.com/blog/post/improved-password-based-a
uthentication-mongodb-30-scram-explained-part-1.
[8]​ ​“Block​ ​cipher​ ​mode​ ​of​ ​operation.”​ ​​Wikipedia​,
Wikimedia​ ​Foundation,​ ​23​ ​Nov.​ ​2017,
en.wikipedia.org/wiki/Block_cipher_mode_of_operation.
[9]“Analysis​ ​and​ ​Mitigation​ ​of​ ​NoSQL​ ​Injections.”​ ​​InfoQ​,
www.infoq.com/articles/nosql-injections-analysis.

