CSC 261/461 – Database Systems
Lecture 11

Spring 2017
MW 3:25 pm – 4:40 pm
January 18 – May 3
Dewey 1101
• Project II Part 1 is out.

• Use grade dispute form in case of dispute.

• Read Chapter 15.1, 15.2, 15.3 and 15.4

• Start learning HTML, CSS, JavaScript, PHP + SQL
 – We will cover the basics next week
 – https://www.w3schools.com/php/php_mysql_intro.asp
If we remove FD2, then LOTS1A is in ______ form?

2NF
Agenda

• Relational Algebra (Today)

• Relational Calculus (Next week)
RELATIONAL ALGEBRA
Motivation

Relational Algebra provides a formal foundation for relational model operations

It is the basis for implementing and optimizing queries in any RDBMS

The core operations of most relational systems are based on Relational Algebra
The Relational Model: Schemata

- Relational Schema:

 Students(
 sid: string,
 name: string,
 gpa: float)

String, float, int, etc. are the **domains** of the attributes
An **attribute** (or **column**) is a typed data entry present in each tuple in the relation.

The number of attributes is the **arity** of the relation.
The Relational Model: Data

Student

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Bob</td>
<td>3.2</td>
</tr>
<tr>
<td>002</td>
<td>Joe</td>
<td>2.8</td>
</tr>
<tr>
<td>003</td>
<td>Mary</td>
<td>3.8</td>
</tr>
<tr>
<td>004</td>
<td>Alice</td>
<td>3.5</td>
</tr>
</tbody>
</table>

A **tuple** or **row** (or **record**) is a single entry in the table having the attributes specified by the schema.

The number of tuples is the **cardinality** of the relation.
The Relational Model: Data

A **relational instance** is a *set* of tuples all conforming to the same *schema*.

Recall: In practice, DBMSs relax the set requirement, and use multisets.

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Bob</td>
<td>3.2</td>
</tr>
<tr>
<td>002</td>
<td>Joe</td>
<td>2.8</td>
</tr>
<tr>
<td>003</td>
<td>Mary</td>
<td>3.8</td>
</tr>
<tr>
<td>004</td>
<td>Alice</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Relation DB Schema

- **Students**\((sid: \text{string}, \text{name}: \text{string}, \text{gpa}: \text{float})\)
- **Courses**\((cid: \text{string}, \text{cname}: \text{string}, \text{credits}: \text{int})\)
- **Enrolled**\((sid: \text{string}, \text{cid}: \text{string}, \text{grade}: \text{string})\)

Relation Instances

<table>
<thead>
<tr>
<th>Sid</th>
<th>Name</th>
<th>Gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Bob</td>
<td>3.2</td>
</tr>
<tr>
<td>123</td>
<td>Mary</td>
<td>3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cid</th>
<th>cname</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>564</td>
<td>564-2</td>
<td>4</td>
</tr>
<tr>
<td>308</td>
<td>417</td>
<td>2</td>
</tr>
</tbody>
</table>

Note that the schemas impose effective domain/type constraints, i.e. Gpa can’t be “Apple”.

CSC 261, Spring 2017, UR
“Find names of all students with GPA > 3.5”

We don’t tell the system how or where to get the data—just what we want, i.e., Querying is **declarative**

To make this happen, we need to translate the *declarative* query into a series of operators... we’ll see this next!

```
SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;
```
Relational Algebra
How does a SQL engine work?

1. **SQL Query**: Declarative query (from user)
2. **Relational Algebra (RA) Plan**: Translate to relational algebra expression
3. **Optimized RA Plan**: Find logically equivalent but more efficient RA expression
4. **Execution**: Execute each operator of the optimized plan!
RDBMS Architecture

How does a SQL engine work?

Relational Algebra (RA) Plan

Optimized RA Plan

Execution

Relational Algebra allows us to translate declarative (SQL) queries into precise and optimizable expressions!
Relational Algebra (RA)

- **Five basic operators:**
 1. Selection: σ
 2. Projection: Π
 3. Cartesian Product: \times
 4. Union: \cup
 5. Difference: $-\,$

- **Derived or auxiliary operators:**
 - Intersection
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ
 - Division

We’ll look at these first!

And also at one example of a derived operator (natural join) and a special operator (renaming)
Keep in mind: RA operates on sets!

- RDBMSs use multisets, however in relational algebra formalism we will consider sets!

- Also: we will consider the named perspective, where every attribute must have a unique name
 - attribute order does not matter…

Now on to the basic RA operators...
1. Selection (σ)

- Returns all tuples which satisfy a condition
- Notation: $\sigma_c(R)$
- Examples
 - $\sigma_{\text{Salary} > 40000}(\text{Employee})$
 - $\sigma_{\text{name} = "Smith"}(\text{Employee})$
- The condition c can be $=,\ <,\ <=,\ >,\ >=,\ <>$

SQL:
```
SELECT * 
FROM Students 
WHERE gpa > 3.5;
```

RA:
```
$\sigma_{gpa > 3.5}(Students)$
```
Another example:

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>200000</td>
</tr>
<tr>
<td>5423341</td>
<td>Smith</td>
<td>600000</td>
</tr>
<tr>
<td>4352342</td>
<td>Fred</td>
<td>500000</td>
</tr>
</tbody>
</table>

\[\sigma_{\text{Salary} > 40000} \ (\text{Employee}) \]
2. Projection (Π)

- Eliminates columns, then removes duplicates.
- Notation: $\Pi_{A_1, \ldots, A_n}(R)$
- Example: project social-security number and names:
 - $\Pi_{\text{SSN}, \text{Name}}(\text{Employee})$
 - Output schema: Answer(\text{SSN, Name})

SQL:
```
SELECT DISTINCT sname, gpa
FROM Students;
```

RA:
```
$\Pi_{\text{sname}, \text{gpa}}(\text{Students})$
```

Example:
```
Students(sid, sname, gpa)
```
Another example:

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>200000</td>
</tr>
<tr>
<td>5423341</td>
<td>John</td>
<td>600000</td>
</tr>
<tr>
<td>4352342</td>
<td>John</td>
<td>200000</td>
</tr>
</tbody>
</table>

\[\Pi_{\text{Name,Salary}} \text{(Employee)} \]
Note that RA Operators are Compositional!

```
SELECT DISTINCT
    sname, gpa
FROM Students
WHERE gpa > 3.5;
```

How do we represent this query in RA?

```
Π_{sname, gpa}(σ_{gpa>3.5}(Students))
```

```
σ_{gpa>3.5}(Π_{sname, gpa}(Students))
```

Are these logically equivalent?

CSC 261, Spring 2017, UR
3. Cross-Product (×)

- Each tuple in R_1 with each tuple in R_2
- Notation: $R_1 \times R_2$
- Example:
 - Employee × Dependents
- Rare in practice; mainly used to express joins

\[
\text{Students}(\text{sid, sname, gpa}) \\
\text{People}(\text{ssn, pname, address})
\]

SQL:

```sql
SELECT * 
FROM Students, People;
```

RA:

\[
\text{Students} \times \text{People}
\]
Another example:

<table>
<thead>
<tr>
<th>ssn</th>
<th>pname</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>216 Rosse</td>
</tr>
<tr>
<td>5423341</td>
<td>Bob</td>
<td>217 Rosse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>John</td>
<td>3.4</td>
</tr>
<tr>
<td>002</td>
<td>Bob</td>
<td>1.3</td>
</tr>
</tbody>
</table>

\[
\text{Students} \times \text{People}
\]
Renaming (ρ)

• Changes the schema, not the instance
• A ‘special’ operator- neither basic nor derived
• Notation: $\rho_{B_1,\ldots,B_n}(R)$

• Note: this is shorthand for the proper form (since names, not order matters!):
 $\rho_{A_1\rightarrow B_1,\ldots,A_n\rightarrow B_n}(R)$

SQL:

```sql
SELECT sid AS studId, sname AS name, gpa AS gradePtAvg
FROM Students;
```

RA:

$\rho_{studId,name,gradePtAvg}(Students)$

We care about this operator because we are working in a named perspective
Another example:

\[\rho_{\text{studId}, \text{name}, \text{gradePtAvg}}(\text{Students}) \]

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>John</td>
<td>3.4</td>
</tr>
<tr>
<td>002</td>
<td>Bob</td>
<td>1.3</td>
</tr>
</tbody>
</table>

\[
(\text{Students}) \\

<table>
<thead>
<tr>
<th>studId</th>
<th>name</th>
<th>gradePtAvg</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>John</td>
<td>3.4</td>
</tr>
<tr>
<td>002</td>
<td>Bob</td>
<td>1.3</td>
</tr>
</tbody>
</table>

CSC 261, Spring 2017, UR
Natural Join (\(\bowtie\))

Note: Textbook notation is *

- Notation: \(R_1 \bowtie R_2\)

- Joins \(R_1\) and \(R_2\) on equality of all shared attributes
 - If \(R_1\) has attribute set \(A\), and \(R_2\) has attribute set \(B\), and they share attributes \(A \cap B = C\), can also be written: \(R_1 \bowtie_C R_2\)

- Our first example of a derived RA operator:
 - Meaning: \(R_1 \bowtie R_2 = \Pi_{A \cup B}(\sigma_{C=D}(\rho_{C \rightarrow D}(R_1 \times R_2)))\)
 - Where:
 - The rename \(\rho_{C \rightarrow D}\) renames the shared attributes in one of the relations
 - The selection \(\sigma_{C=D}\) checks equality of the shared attributes
 - The projection \(\Pi_{A \cup B}\) eliminates the duplicate common attributes

SQL:

```
SELECT DISTINCT ssid, S.name, gpa, ssn, address
FROM Students S, People P
WHERE S.name = P.name;
```

RA:

```
Students \bowtie People
```

Students(sid, name, gpa)
People(ssn, name, address)
Another example:

Students S

<table>
<thead>
<tr>
<th>sid</th>
<th>S.name</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>John</td>
<td>3.4</td>
</tr>
<tr>
<td>002</td>
<td>Bob</td>
<td>1.3</td>
</tr>
</tbody>
</table>

People P

<table>
<thead>
<tr>
<th>ssn</th>
<th>P.name</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>216 Rosse</td>
</tr>
<tr>
<td>5423341</td>
<td>Bob</td>
<td>217 Rosse</td>
</tr>
</tbody>
</table>

Students \bowtie **People**
Natural Join

• Given schemas $R(A, B, C, D)$, $S(A, C, E)$, what is the schema of $R \bowtie S$?

• Given $R(A, B, C)$, $S(D, E)$, what is $R \bowtie S$?

• Given $R(A, B)$, $S(A, B)$, what is $R \bowtie S$?
Example: Converting SFW Query -> RA

SELECT DISTINCT
 gpa,
 address
FROM Students S,
 People P
WHERE gpa > 3.5 AND
 sname = pname;

How do we represent this query in RA?

\[
\Pi_{gpa, address}(\sigma_{gpa > 3.5}(S \bowtie P))
\]
Logical Equivalence of RA Plans

- Given relations $R(A,B)$ and $S(B,C)$:
 - Here, projection & selection commute:
 - $\sigma_{A=5}(\Pi_A(R)) = \Pi_A(\sigma_{A=5}(R))$
 - What about here?
 - $\sigma_{A=5}(\Pi_B(R)) \neq \Pi_B(\sigma_{A=5}(R))$
We saw how we can transform declarative SQL queries into precise, compositional RA plans.
How does a SQL engine work?

We’ll look at how to then optimize these plans later in this lecture.
How is the RA “plan” executed?

We already know how to execute all the basic operators!
2. ADV. RELATIONAL ALGEBRA
What you will learn about in this section

1. Set Operations in RA

2. Fancier RA
Relational Algebra (RA)

- **Five basic operators:**
 1. Selection: σ
 2. Projection: Π
 3. Cartesian Product: \times
 4. Union: \cup
 5. Difference: $-$

- **Derived or auxiliary operators:**
 - Intersection
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ
 - Division

We’ll look at these

And also at some of these derived operators
1. Union (\cup) and 2. Difference ($-$)

- $R_1 \cup R_2$
 - Example: $\text{ActiveEmployees} \cup \text{RetiredEmployees}$

- $R_1 - R_2$
 - Example: $\text{AllEmployees} - \text{RetiredEmployees}$
What about Intersection (\(\cap\))?

- It is a derived operator
- \(R_1 \cap R_2 = R_1 - (R_1 - R_2)\)
- Also expressed as a join!
- Example
 - \(\text{UnionizedEmployees} \cap \text{RetiredEmployees}\)
Theta Join \((\bowtie_\theta) \)

- A join that involves a predicate
- \(R_1 \bowtie_\theta R_2 = \sigma_\theta (R_1 \times R_2) \)
- Here \(\theta \) can be any condition

Note that natural join is a theta join + a projection.

SQL:
```
SELECT *
FROM Students, People
WHERE \( \theta \);
```

RA:
```
Students \( \bowtie_\theta \) People
```
Equi-join ($\bowtie_{A=B}$)

- A theta join where θ is an equality
- $R_1 \bowtie_{A=B} R_2 = \sigma_{A=B} (R_1 \times R_2)$
- Example:
 - Employee $\bowtie_{SSN=SSN}$ Dependents

SQL:
```
SELECT *
FROM Students S,
     People P
WHERE sname = pname;
```

RA:
```
S $\bowtie_{sname=pname} P$
```
Semijoin (⋉)

- \(R \bowtie S = \Pi_{A_1, \ldots, A_n} (R \bowtie S) \)
- Where \(A_1, \ldots, A_n \) are the attributes in \(R \)
- Example:
 - Employee \(\bowtie \) Dependents

SQL:

```sql
SELECT DISTINCT sid, sname, gpa
FROM Students, People
WHERE sname = pname;
```

RA:

\(Students \bowtie People \)
Divison (\div)

- $T(Y) = R(Y,X) \div S(X)$

- Y is the set of attributes of R that are not attributes of S.

- For a tuple t to appear in the result T of the Division, the values in t must appear in R in combination with every tuple in S.
Example

\[R(Y,X) \div S(X) = T(Y) \]

<table>
<thead>
<tr>
<th>PilotSkills</th>
<th>plane_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Celko'</td>
<td>'Piper Cub'</td>
</tr>
<tr>
<td>'Higgins'</td>
<td>'B-52 Bomber'</td>
</tr>
<tr>
<td>'Higgins'</td>
<td>'F-14 Fighter'</td>
</tr>
<tr>
<td>'Higgins'</td>
<td>'Piper Cub'</td>
</tr>
<tr>
<td>'Jones'</td>
<td>'B-52 Bomber'</td>
</tr>
<tr>
<td>'Jones'</td>
<td>'F-14 Fighter'</td>
</tr>
<tr>
<td>'Smith'</td>
<td>'B-1 Bomber'</td>
</tr>
<tr>
<td>'Smith'</td>
<td>'B-52 Bomber'</td>
</tr>
<tr>
<td>'Smith'</td>
<td>'F-14 Fighter'</td>
</tr>
<tr>
<td>'Wilson'</td>
<td>'B-1 Bomber'</td>
</tr>
<tr>
<td>'Wilson'</td>
<td>'B-52 Bomber'</td>
</tr>
<tr>
<td>'Wilson'</td>
<td>'F-14 Fighter'</td>
</tr>
<tr>
<td>'Wilson'</td>
<td>'F-17 Fighter'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hangar</th>
<th>plane_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>'B-1 Bomber'</td>
<td></td>
</tr>
<tr>
<td>'B-52 Bomber'</td>
<td></td>
</tr>
<tr>
<td>'F-14 Fighter'</td>
<td></td>
</tr>
</tbody>
</table>

SELECT PS1.pilot_name
FROM PilotSkills AS PS1, Hangar AS H1
WHERE PS1.plane_name = H1.plane_name
GROUP BY PS1.pilot_name
HAVING COUNT(PS1.plane_name) =
(SELECT COUNT(plane_name) FROM Hangar);

Multisets
Recall that SQL uses Multisets

<table>
<thead>
<tr>
<th>Tuple</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, a)</td>
</tr>
<tr>
<td>(1, a)</td>
</tr>
<tr>
<td>(1, b)</td>
</tr>
<tr>
<td>(2, c)</td>
</tr>
<tr>
<td>(2, c)</td>
</tr>
<tr>
<td>(2, c)</td>
</tr>
<tr>
<td>(1, d)</td>
</tr>
<tr>
<td>(1, d)</td>
</tr>
</tbody>
</table>

Multiset X

$\lambda(X) = \text{"Count of tuple in } X\text{"}$
($\text{Items not listed have implicit count } 0$)

<table>
<thead>
<tr>
<th>Tuple</th>
<th>$\lambda(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, a)</td>
<td>2</td>
</tr>
<tr>
<td>(1, b)</td>
<td>1</td>
</tr>
<tr>
<td>(2, c)</td>
<td>3</td>
</tr>
<tr>
<td>(1, d)</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: In a set all counts are $\{0,1\}$.

Equivalent Representations of a Multiset
Generalizing Set Operations to Multiset Operations

For sets, this is intersection

\[\lambda(Z) = \min(\lambda(X), \lambda(Y)) \]
Generalizing Set Operations to Multiset Operations

\[
\lambda(Z) = \lambda(X) + \lambda(Y)
\]

For sets, this is \textit{union}.
Operations on Multisets

- $\sigma_G(R)$: preserve the number of occurrences

- $\Pi_A(R)$: no duplicate elimination

- Cross-product, join: no duplicate elimination

This is important-relational engines work on multisets, not sets!
Complete Set of Relational Operations

- The set of operations including
 - Select σ,
 - Project π
 - Union \cup
 - Difference $-$
 - Rename ρ, and
 - Cartesian Product \times

- is called a complete set

- because any other relational algebra expression can be expressed by a combination of these five operations.

- For example:
 - $R \cap S = (R \cup S) - ((R - S) \cup (S - R))$
 - $R \bowtie_{\text{join condition}} S = \sigma_{\text{join condition}}(R \times S)$
Table 8.1 Operations of Relational Algebra

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>PURPOSE</th>
<th>NOTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT</td>
<td>Selects all tuples that satisfy the selection condition from a relation R.</td>
<td>$\sigma_{<\text{selection condition}>}(R)$</td>
</tr>
<tr>
<td>PROJECT</td>
<td>Produces a new relation with only some of the attributes of R, and removes duplicate tuples.</td>
<td>$\pi_{<\text{attribute list}>}(R)$</td>
</tr>
<tr>
<td>THETA JOIN</td>
<td>Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.</td>
<td>$R_1 \bowtie_{<\text{join condition}>} R_2$</td>
</tr>
<tr>
<td>EQUIJOIN</td>
<td>Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.</td>
<td>$R_1 \bowtie_{<\text{join condition}>} R_2$, $R_1 \bowtie_{<\text{join attributes 1}>}, (\langle \text{join attributes 2}\rangle) R_2$</td>
</tr>
<tr>
<td>NATURAL JOIN</td>
<td>Same as EQUIJOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.</td>
<td>$R_1^* \bowtie_{<\text{join condition}>} R_2$, $R_1^* \bowtie_{<\text{join attributes 1}>}, (\langle \text{join attributes 2}\rangle) R_2$ OR R_2 OR $R_1^* R_2$</td>
</tr>
</tbody>
</table>
Table 8.1 Operations of Relational Algebra (continued)

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>PURPOSE</th>
<th>NOTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNION</td>
<td>Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2; R_1 and R_2 must be union compatible.</td>
<td>$R_1 \cup R_2$</td>
</tr>
<tr>
<td>INTERSECTION</td>
<td>Produces a relation that includes all the tuples in both R_1 and R_2; R_1 and R_2 must be union compatible.</td>
<td>$R_1 \cap R_2$</td>
</tr>
<tr>
<td>DIFFERENCE</td>
<td>Produces a relation that includes all the tuples in R_1 that are not in R_2; R_1 and R_2 must be union compatible.</td>
<td>$R_1 - R_2$</td>
</tr>
<tr>
<td>CARTESIAN PRODUCT</td>
<td>Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2.</td>
<td>$R_1 \times R_2$</td>
</tr>
<tr>
<td>DIVISION</td>
<td>Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$.</td>
<td>$R_1(Z) \div R_2(Y)$</td>
</tr>
</tbody>
</table>
Query Tree Notation

• Query Tree
 – An internal data structure to represent a query
 – Standard technique for estimating the work involved in executing the query, the generation of intermediate results, and the optimization of execution
 – Nodes stand for operations like selection, projection, join, renaming, division,
 – Leaf nodes represent base relations
 – A tree gives a good visual feel of the complexity of the query and the operations involved
 – Algebraic Query Optimization consists of rewriting the query or modifying the query tree into an equivalent tree.
EMPLOYEE

<table>
<thead>
<tr>
<th>Fname</th>
<th>Minit</th>
<th>Lname</th>
<th>Ssn</th>
<th>Bdate</th>
<th>Address</th>
<th>Sex</th>
<th>Salary</th>
<th>Super_ssn</th>
<th>Dno</th>
</tr>
</thead>
</table>

DEPARTMENT

<table>
<thead>
<tr>
<th>Dname</th>
<th>Dnumber</th>
<th>Mgr_ssn</th>
<th>Mgr_start_date</th>
</tr>
</thead>
</table>

DEPT_LOCATIONS

<table>
<thead>
<tr>
<th>Dnumber</th>
<th>Dlocation</th>
</tr>
</thead>
</table>

PROJECT

<table>
<thead>
<tr>
<th>Pname</th>
<th>Pnumber</th>
<th>Plocation</th>
<th>Dnum</th>
</tr>
</thead>
</table>

WORKS_ON

<table>
<thead>
<tr>
<th>Essn</th>
<th>Pno</th>
<th>Hours</th>
</tr>
</thead>
</table>

DEPENDENT

<table>
<thead>
<tr>
<th>Essn</th>
<th>Dependent_name</th>
<th>Sex</th>
<th>Bdate</th>
<th>Relationship</th>
</tr>
</thead>
</table>

CSC 261, Spring 2017, UR
• For every project located in Stafford, list the project number, dept. number, manager’s last name, address, and birth date

(Example of Query Tree)

\[\pi_{P\cdot Pnumber, P\cdot Dnum, E\cdot Lname, E\cdot Address, E\cdot Bdate} \]
\[(3) \quad \bowtie D\cdot Mgr_ssn = E\cdot Ssn \]
\[(2) \quad \bowtie P\cdot Dnum = D\cdot Dnumber \]
\[(1) \quad \sigma \ P\cdot Plocation = 'Stafford' \]
Summary

• Total 8 basic operators:
 – Unary relational operators (3)
 • Selection: σ
 • Projection: Π
 • Renaming: ρ
 – Binary relational operators (5)
 • Union: \cup
 • Intersect: \cap
 • Set difference: $-$
 • Cartesian Product (Join): \times, \bowtie
 • Division: \div

• Tell us: How the query may be executed.
Acknowledgement

• Some of the slides in this presentation are taken from the slides provided by the authors.
• Many of these slides are taken from cs145 course offered by Stanford University.