CSC 261/461 – Database Systems Lecture 10

Spring 2018

Please put away all electronic devices

Announcements

- From now on, no electronic devices allowed during lecture
 - Includes Phone and Laptop
 - Why?
 - For your own good
 - And for others
 - What should I do instead?
 - Get your notebook out and start keeping notes!

Design Theory (ER model to Relations)

ER Models to Relations

Please go through Chapter 9

Entity Sets to Tables (Step 1)

ssn	name	lot
123-22-3333	Alex	23
234-44-6666	Bob	44
567-88-9787	John	12

```
CREATE TABLE Employees ( ssn char(11), name varchar(30), lot Integer, PRIMARY KEY (ssn))
```

Multivalued Attribute

Multivalued Attribute

Translating Weak Entity Sets

Relationship Sets (without Constraints) to Tables

Relationship Sets (without Constraints) to Tables

```
CREATE TABLE Works_in( ssn char(11), did integer (30), address varchar(30), since date,

PRIMARY KEY (ssn, did, address),

FOREIGN KEY (ssn) REFERENCES Employees,

FOREIGN KEY (address) REFERENCES Locations,

FOREIGN KEY (did) REFERENCES Departments,
```

Relationship Sets (without Constraints) to Tables

ONE-TO-ONE RELATIONSHIP

Relationship Sets to Tables (Option 1)


```
CREATE TABLE Manages ( ssn char(11), did integer, since date,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE,

FOREIGN KEY (did) REFERENCES Departments ON DELETE CASCADE,
)
```

Relationship Sets to Tables (Option 2)


```
CREATE TABLE Manages( ssn char(11), did integer, since date,

PRIMARY KEY (ssn),

FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE,

FOREIGN KEY (did) REFERENCES Departments ON DELETE CASCADE,
)
```

Better way of doing it (Option 3)


```
CREATE TABLE Dept_Mgr( did integer dname varchar(30), budget float(30), ssn char(11), since date,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees ON DELETE SET NULL,
)
```

Possible but not recommended (Option 4)


```
CREATE TABLE Employee_Mgr( ssn char(11), name varchar(30), lot integer, since date, did integer,
```

Why Bad?

PRIMARY KEY (ssn),
FOREIGN KEY (did) REFERENCES Departments (did)
ON DELETE SET NULL,
) CSC 261, Spring 2018

Many NULL Entries

ONE-TO-MANY RELATIONSHIP

Relationship Sets to Tables (Option 1)


```
CREATE TABLE Manages ( ssn char(11), did integer, since date,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE,

FOREIGN KEY (did) REFERENCES Departments ON DELETE CASCADE,
)
```

Relationship Sets to Tables (Option 2)


```
CREATE TABLE Manages ( ar (11), did per, since co, prince co, prin
```

Relationship Sets to Tables (Option 2 (2nd try))


```
CREATE TABLE Manages ( ssn char(11), did integer, since date,

PRIMARY KEY (ssn, did),

FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE,

FOREIGN KEY (did) REFERENCES Departments ON DELETE CASCADE,
)
```

Better way of doing it (Option 3)


```
CREATE TABLE Dept_Mgr( did integer dname varchar(30), budget float(30), ssn char(11), since date,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees ON DELETE SET NULL,
)
```

Not Possible (Option 4)

Why Not?

All relations are flat.

What about this?


```
CREATE TABLE Employee_Mgr( ssn char(11), name varchar(30), lot integer, since date, did integer,
```

```
PRIMARY KEY (ssn, did),
FOREIGN KEY (did) REFERENCES Departments (did)
ON DELETE RESTRICT,
) CSC 261, Spring 2018
```

Possible. But...

Our Next topic... It's a bad Functional Dependency

Should Department entity have Total participation?


```
CREATE TABLE Dept_Mgr( did integer dname varchar(30), budget float(30), ssn char(11), since date,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE, No. We do not want to delete a department if the manager quits
```

MANY-TO-MANY RELATIONSHIP

Relationship Sets to Tables (Only Option)


```
CREATE TABLE Manages ( ssn char(11), did integer, since date,

PRIMARY KEY (did, ssn),

FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE,

FOREIGN KEY (did) REFERENCES Departments ON DELETE CASCADE,
)
```

MAPPING RELATIONSHIP INTO ENTITY SET

Version 1

Version 2

If you ever face this, check if you could simplify

TRANSLATING CLASS HIERARCHIES

Translating Class Hierarchies

Two options

- 1. We can map each of the entity sets Employees, Hourly_Emps, and Contract_Emps to a distinct relation.
- 2. We can create just two relations, corresponding to Hourly_Emps and Contract_Emps

Both have their pros and cons

- Redundancy
- Performance

Notes on Project 1 Milestone 2

We did not cover Chapter 4 and you do not need to study it for exam or quizzes.

If you understand this is A concept and how to convert such an ER diagram into tables, that's fine.

And this is exactly what steps 8 and 9 are in Chapter 9

Hints for Project 2 Part 1

- item.dat contains nine fields (itemID, name, currently, buy_price, first_bid, started, ends, userID, and description)
- user.dat stores four fields (userID, rating, location, and country)
- category.dat stores only two fields (itemID, and category).
- bid.dat contains four fields (itemID, userID, time, and amount).

E/R Summary

- E/R diagrams are a visual syntax that allows technical and non-technical people to talk
 - For conceptual design
- Basic constructs: entity, relationship, and attributes
- A good design is faithful to the constraints of the application, but not overzealous
- The ER model to relation mapping is very important part of the database design.

Acknowledgement

 Some of the slides in this presentation are taken from the slides provided by the authors.

 Many of these slides are taken from cs145 course offered by Stanford University.