CSC 261/461 – Database Systems
Lecture 10

Spring 2018

Please put away all electronic devices
Announcements

• From now on, no electronic devices allowed during lecture
 – Includes Phone and Laptop
 – Why?
 • For your own good
 • And for others

 – What should I do instead?
 • Get your notebook out and start keeping notes!
Design Theory (ER model to Relations)
Please go through Chapter 9
CREATE TABLE Employees (
 ssn char(11),
 name varchar(30),
 lot Integer,
 PRIMARY KEY (ssn))
CREATE TABLE `Hobby` (
 Email varchar(30),
 Hobby varchar(30),
 PRIMARY KEY (Email, Hobby),
 FOREIGN KEY (Email) REFERENCES User(Email)
 ON DELETE CASCADE
)
CREATE TABLE Dept_Policy (pname varchar(30), age integer, cost float, ssn char(11), PRIMARY KEY (pname, ssn), FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE)
Relationship Sets (without Constraints) to Tables

- Employees
 - ssn
 - name
 - lot

- Works_In
 - since
 - did
 - dname
 - budget

- Departments
 - budget

- Locations
 - address
 - capacity
CREATE TABLE Works_in(
 ssn char(11),
 did integer (30),
 address varchar(30),
 since date,
 PRIMARY KEY (ssn, did, address),
 FOREIGN KEY (ssn) REFERENCES Employees,
 FOREIGN KEY (address) REFERENCES Locations,
 FOREIGN KEY (did) REFERENCES Departments,
)
CREATE TABLE Reports_To(
 supervisor_ssn char(11),
 subordinate_ssn char(11),
 PRIMARY KEY (supervisor_ssn, subordinate_ssn),
 FOREIGN KEY (supervisor_ssn)
 REFERENCES Employees(ssn),
 FOREIGN KEY (subordinate_ssn)
 REFERENCES Employees(ssn)
)
ONE-TO-ONE RELATIONSHIP
CREATE TABLE Manages (ssn char(11),
did integer,
since date,

PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE,
FOREIGN KEY (did) REFERENCES Departments ON DELETE CASCADE,
)
CREATE TABLE `Manages` (ssn char(11),
did integer,
since date,

PRIMARY KEY (ssn),
FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE,
FOREIGN KEY (did) REFERENCES Departments ON DELETE CASCADE,
)
CREATE TABLE Dept_Mgr(
 did integer,
 dname varchar(30),
 budget float(30),
 ssn char(11),
 since date,

 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees ON DELETE SET NULL,
)
CREATE TABLE Employee_Mgr(
 ssn char(11),
 name varchar(30),
 lot integer,
 since date,
 did integer,
 PRIMARY KEY (ssn),
 FOREIGN KEY (did) REFERENCES Departments (did)
 ON DELETE SET NULL,
)

Why Bad?
Many NULL Entries
ONE-TO-MANY RELATIONSHIP
CREATE TABLE Manages (ssn char(11), did integer, since date, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE, FOREIGN KEY (did) REFERENCES Departments ON DELETE CASCADE,)
CREATE TABLE `Manages` (
 `ssn` char(11),
 `did` integer,
 `since` date,
 PRIMARY KEY (`ssn`),
 FOREIGN KEY (`ssn`) REFERENCES Employees ON DELETE CASCADE,
 FOREIGN KEY (`did`) REFERENCES Departments ON DELETE CASCADE,
)
CREATE TABLE Manages(
 ssn char(11),
 did integer,
 since date,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE,
 FOREIGN KEY (did) REFERENCES Departments ON DELETE CASCADE
)
CREATE TABLE Dept_Mgr(
 did integer,
 dname varchar(30),
 budget float(30),
 ssn char(11),
 since date,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees ON DELETE SET NULL,
)
CREATE TABLE Employee_Mgr (ssn char(11),
 name varchar(30),
 lot integer,
 since date,
 did integer,
 PRIMARY KEY (ssn),
 FOREIGN KEY (did) REFERENCES Departments (did)
 ON DELETE NO ACTION,
)
CREATE TABLE Employee_Mgr(
 ssn char(11),
 name varchar(30),
 lot integer,
 since date,
 did integer,

 PRIMARY KEY (ssn, did),
 FOREIGN KEY (did) REFERENCES Departments (did)
 ON DELETE RESTRICT,
)

Possible. But...

Our Next topic... It’s a bad Functional Dependency
CREATE TABLE Dept_Mgr(
 did integer,
 dname varchar(30),
 budget float(30),
 ssn char(11),
 since date,

 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE,
)

No. We do not want to delete a department if the manager quits.
MANY-TO-MANY RELATIONSHIP
CREATE TABLE Manages (
 ssn char(11),
did integer,
since date,
 PRIMARY KEY (did, ssn),
 FOREIGN KEY (ssn) REFERENCES Employees ON DELETE CASCADE,
 FOREIGN KEY (did) REFERENCES Departments ON DELETE CASCADE,
)
MAPPING RELATIONSHIP INTO ENTITY SET
If you ever face this, check if you could simplify
TRANSLATING CLASS HIERARCHIES
Translating Class Hierarchies

Employees

- name
- ssn
- lot

isa

Hourly_Emps
- Hours_worked
- Hourly_wages

Contract_Emps
- Contract_id

Contract_Emps

Hourly_Emps
Two options

1. We can map each of the entity sets Employees, Hourly_Emps, and Contract_Emps to a distinct relation.

2. We can create just two relations, corresponding to Hourly_Emps and Contract_Emps

Both have their pros and cons

– Redundancy
– Performance
We did not cover Chapter 4 and you do not need to study it for exam or quizzes.

If you understand this isA concept and how to convert such an ER diagram into tables, that’s fine. And this is exactly what steps 8 and 9 are in Chapter 9.
Hints for Project 2 Part 1

- **item.dat** contains nine fields (itemId, name, currently, buy_price, first_bid, started, ends, userID, and description)

- **user.dat** stores four fields (userID, rating, location, and country)

- **category.dat** stores only two fields (itemId, and category).

- **bid.dat** contains four fields (itemId, userID, time, and amount).
E/R Summary

- E/R diagrams are a visual syntax that allows technical and non-technical people to talk
 - For conceptual design

- Basic constructs: entity, relationship, and attributes

- A good design is faithful to the constraints of the application, but not overzealous

- The ER model to relation mapping is very important part of the database design.
• Some of the slides in this presentation are taken from the slides provided by the authors.

• Many of these slides are taken from cs145 course offered by Stanford University.