Announcement

• Read Chapter 14 and 15
• You must self-study these chapters — Too huge to cover in Lectures

• Project 2 Part 1 due tonight
1. Database Design

2. Normal forms & functional dependencies

3. Finding functional dependencies

4. Closures, superkeys & keys
Design Theory

• Design theory is about how to represent your data to avoid anomalies.

• Achieved by Data Normalization, a process of analyzing a relation to ensure that it is well formed.

• Normalization involves decomposing relations with anomalies to produce smaller well structured relations.

• If a relation is normalized (or well formed), rows can be inserted, deleted and modified without creating anomalies.
Normalization Example

• \(\text{(Student ID)} \rightarrow \text{(Student Name, DormName, DormCost)} \)

• However, if
 \[\neg \text{(DormName)} \rightarrow \text{(DormCost)} \]

Then, DormCost should be put into its own relation, resulting in:

\(\text{(Student ID)} \rightarrow \text{(Student Name, DormName)} \)
\(\text{(DormName)} \rightarrow \text{(DormCost)} \)
Normalization Example

• \((\text{AttorneyID, ClientID}) \rightarrow (\text{ClientName, MeetingDate, Duration})\)

• However, if
 - \(\text{ClientID} \rightarrow \text{ClientName}\)

• Then: \(\text{ClientName}\) should be in its own relation:
 - \((\text{AttorneyID, ClientID}) \rightarrow (\text{MeetingDate, Duration})\)
 - \((\text{ClientID}) \rightarrow (\text{ClientName})\)
Normal Forms

- **1st Normal Form (1NF)** = All tables are flat
- **2nd Normal Form** = disused
- **3rd Normal Form (3NF)**
- **Boyce-Codd Normal Form (BCNF)**
- **4th and 5th Normal Forms** = see text books

DB designs based on *functional dependencies*, intended to prevent data *anomalies*
Normalization Steps

Table with multivalued attributes
- Remove multivalued attributes
 - First Normal Form (1NF)

First Normal Form (1NF)
- Remove Partial Dependencies
 - Second Normal Form (2NF)

Second Normal Form (2NF)
- Remove Transitive Dependencies
 - Third Normal Form (3NF)
1st Normal Form (1NF)

Violates 1NF.

<table>
<thead>
<tr>
<th>Student</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>{CS145,CS229}</td>
</tr>
<tr>
<td>Joe</td>
<td>{CS145,CS106}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

In 1st NF

<table>
<thead>
<tr>
<th>Student</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CS145</td>
</tr>
<tr>
<td>Mary</td>
<td>CS229</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
</tr>
<tr>
<td>Joe</td>
<td>CS106</td>
</tr>
</tbody>
</table>

1NF Constraint: Types must be atomic!
Data Anomalies & Constraints
Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes *anomalies*:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CSC261</td>
<td>101</td>
</tr>
<tr>
<td>Joe</td>
<td>CSC261</td>
<td>101</td>
</tr>
<tr>
<td>Sam</td>
<td>CSC261</td>
<td>101</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

If every course is in only one room, contains *redundant* information!
Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes *anomalies*:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CSC261</td>
<td>101</td>
</tr>
<tr>
<td>Joe</td>
<td>CSC261</td>
<td>703</td>
</tr>
<tr>
<td>Sam</td>
<td>CSC261</td>
<td>101</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

If we update the room number for one tuple, we get inconsistent data = an *update anomaly*
Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

If everyone drops the class, we lose what room the class is in! = a delete anomaly
A poorly designed database causes *anomalies*:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CSC261</td>
<td>B01</td>
</tr>
<tr>
<td>Joe</td>
<td>CSC261</td>
<td>B01</td>
</tr>
<tr>
<td>Sam</td>
<td>CSC261</td>
<td>B01</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

Similarly, we can’t reserve a room without students = an *insert anomaly*.
Constraints Prevent (some) Anomalies in the Data

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CSC261</td>
</tr>
<tr>
<td>Joe</td>
<td>CSC261</td>
</tr>
<tr>
<td>Sam</td>
<td>CSC261</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC261</td>
<td>101</td>
</tr>
<tr>
<td>CSC257</td>
<td>601</td>
</tr>
</tbody>
</table>

Today: develop theory to understand why this design may be better and how to find this *decomposition*...

Is this form better?
- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?
Functional Dependencies
Functional Dependencies for Dummies

• A relationship between attributes where one attribute (or group of attributes) determines the value of another attribute (or group of attributes) in the same table.

• Example:
 SSN uniquely identify any Person

 \((\text{SSN}) \rightarrow (\text{First Name, Last Name})\)
Candidate Keys/Primary Keys and Functional Dependencies

• By definition:
• A candidate key of a relation functionally determines all other non key attributes in the row.

• Implies:
• A primary key of a relation functionally determines all other non key attributes in the row.

EmployeeID \rightarrow (EmployeeName, EmpPhone)
Def: Let A, B be sets of attributes.
We write $A \rightarrow B$ or say A functionally determines B if, for any tuples t_1 and t_2:

$$t_1[A] = t_2[A] \text{ implies } t_1[B] = t_2[B]$$

and we call $A \rightarrow B$ a functional dependency.

$A \rightarrow B$ means that

“whenever two tuples agree on A then they agree on B.\)"
Defn (again): Given attribute sets $A = \{A_1, \ldots, A_m\}$ and $B = \{B_1, \ldots, B_n\}$ in R,
Defn (again):
Given attribute sets \(A = \{A_1,\ldots,A_m\} \) and \(B = \{B_1,\ldots,B_n\} \) in \(R \),

The *functional dependency* \(A \rightarrow B \) on \(R \) holds if for *any* \(t_i, t_j \) in \(R \):
Defn (again):
Given attribute sets $A = \{A_1, ..., A_m\}$ and $B = \{B_1, ..., B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_j in R:

$t_i[A_1] = t_j[A_1]$ AND $t_i[A_2] = t_j[A_2]$ AND ... AND $t_i[A_m] = t_j[A_m]$
A Picture Of FDs

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>...</th>
<th>A_m</th>
<th>B_1</th>
<th>...</th>
<th>B_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If t_1, t_2 agree here...

...they also agree here!

Defn (again):
Given attribute sets $A = \{A_1, ..., A_m\}$ and $B = \{B_1, ..., B_n\}$ in R,

The *functional dependency* $A \rightarrow B$
on R holds if for any t_i, t_j in R:

if $t_i[A_1] = t_j[A_1]$ AND $t_i[A_2] = t_j[A_2]$ AND ...
AND $t_i[A_m] = t_j[A_m]$

then $t_i[B_1] = t_j[B_1]$ AND $t_i[B_2] = t_j[B_2]$ AND ...
AND $t_i[B_n] = t_j[B_n]$
• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
 • One which minimizes the possibility of anomalies
A functional dependency is a form of constraint

- *Holds* on some instances not others.

- Part of the schema, helps define a valid instance.

Recall: an *instance* of a schema is a multiset of tuples conforming to that schema, *i.e. a table*

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Sam</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

Note: The FD \{Course\} -> \{Room\} *holds on this instance*
Functional Dependencies as Constraints

Note that:

- You can check if an FD is violated by examining a single instance;
- However, you cannot prove that an FD is part of the schema by examining a single instance.
 - *This would require checking every valid instance*

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Joe</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>Sam</td>
<td>CS145</td>
<td>B01</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

However, cannot prove that the FD {Course} -> {Room} is *part of the schema*
An FD is a constraint which holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>
More Examples

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

\{Position\} \rightarrow \{Phone\}
More Examples

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

but not {Phone} \(\rightarrow\) {Position}
Find at least *three* FDs which hold on this instance:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>
FINDING FUNCTIONAL DEPENDENCIES
What you will learn about in this section

1. “Good” vs. “Bad” FDs: Intuition
2. Finding FDs
3. Closures
We can start to develop a notion of **good** vs. **bad** FDs:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Intuitively:

- **EmpID** -> Name, Phone, Position is “**good FD**”
- *Minimal redundancy, less possibility of anomalies*
"Good” vs. “Bad” FDs

We can start to develop a notion of **good** vs. **bad** FDs:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Intuitively:

- EmpID -> Name, Phone, Position is "good FD"
- But Position -> Phone is a "bad FD"
- **Redundancy!**
- **Possibility of data anomalies**
“Good” vs. “Bad” FDs

Returning to our original example... can you see how the “bad FD” \{Course\} -> \{Room\} could lead to an:
- Update Anomaly
- Insert Anomaly
- Delete Anomaly
- ...

Given a set of FDs (from user) our goal is to:
1. Find all FDs, and
2. Eliminate the “Bad Ones".
FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
 1. One which minimizes possibility of anomalies
Finding Functional Dependencies

• There can be a very large number of FDs…
 – How to find them all efficiently?

• We can’t necessarily show that any FD will hold on all instances…
 – How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?
Equivalent to asking: Given a set of FDs, $F = \{f_1, \ldots f_n\}$, does an FD g hold?

Inference problem: How do we decide?
Finding Functional Dependencies

Example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Color</th>
<th>Category</th>
<th>Dep</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Green</td>
<td>Gadget</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Widget</td>
<td>Black</td>
<td>Gadget</td>
<td>Toys</td>
<td>59</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Green</td>
<td>Whatsit</td>
<td>Garden</td>
<td>99</td>
</tr>
</tbody>
</table>

Given the provided FDs, we can see that \{Name, Category\} \rightarrow \{Price\} must also hold on any instance...

Which / how many other FDs do?!?
Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, $F = \{f_1, \ldots, f_n\}$, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called Armstrong’s Rules.

1. Split/Combine,
2. Reduction, and
3. Transitivity... ideas by picture
1. Split/Combine (Decomposition & Union Rule)

\[
\begin{array}{cccc}
A_1 & \ldots & A_m & B_1 & \ldots & B_n \\
\end{array}
\]

\[A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n\]
1. Split/Combine (Decomposition & Union Rule)

\[
\begin{array}{c|c|c|c|c}
 & A_1 & \ldots & A_m & B_1 & \ldots & B_n \\
\hline
\end{array}
\]

\[A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n\]

... is equivalent to the following \(n\) FDs...

\[A_1, \ldots, A_m \rightarrow B_i \text{ for } i=1, \ldots, n\]
1. Split/Combine (Decomposition & Union Rule)

And vice-versa, $A_1,...,A_m \rightarrow B_i$ for $i=1,...,n$

... is equivalent to ...

$A_1, ..., A_m \rightarrow B_1, ..., B_n$
2. Reduction/Trivial (Reflexive Rule)

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>\ldots</th>
<th>A_m</th>
</tr>
</thead>
</table>

$A_1, \ldots, A_m \rightarrow A_j$ for any $j=1, \ldots, m$
3. Transitive Rule

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>...</th>
<th>Aₘ</th>
<th>B₁</th>
<th>...</th>
<th>Bₙ</th>
<th>C₁</th>
<th>...</th>
<th>Cₖ</th>
</tr>
</thead>
</table>

A₁, ..., Aₘ → B₁, ..., Bₙ and
B₁, ..., Bₙ → C₁, ..., Cₖ
3. Transitive Rule

\[
\begin{array}{cccccc}
A_1 & \ldots & A_m & B_1 & \ldots & B_n & C_1 & \ldots & C_k \\
\hline
A_1 & \ldots & A_m & B_1 & \ldots & B_n & C_1 & \ldots & C_k \\
\end{array}
\]

\[A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \text{ and } B_1, \ldots, B_n \rightarrow C_1, \ldots, C_k\]

implies

\[A_1, \ldots, A_m \rightarrow C_1, \ldots, C_k\]
Augmentation Rule

\[A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \text{ implies} \]
Augmentation Rule

<table>
<thead>
<tr>
<th>X_1</th>
<th>A_1</th>
<th>...</th>
<th>A_m</th>
<th>B_1</th>
<th>...</th>
<th>B_n</th>
</tr>
</thead>
</table>

$A_1, \ldots, A_m \Rightarrow B_1, \ldots, B_n$

implies

$X_1, A_1, \ldots, A_m \Rightarrow B_1, \ldots, B_n$
Finding Functional Dependencies

Example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Color</th>
<th>Category</th>
<th>Dep</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Green</td>
<td>Gadget</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Widget</td>
<td>Black</td>
<td>Gadget</td>
<td>Toys</td>
<td>59</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Green</td>
<td>Whatsit</td>
<td>Garden</td>
<td>99</td>
</tr>
</tbody>
</table>

Provided FDs:
1. \{Name\} \rightarrow \{Color\}
2. \{Category\} \rightarrow \{Department\}
3. \{Color, Category\} \rightarrow \{Price\}

Which / how many other FDs hold?
Finding Functional Dependencies

Example:

Provided FDs:
1. \{Name\} \rightarrow \{Color\}
2. \{Category\} \rightarrow \{Dept.\}
3. \{Color, Category\} \rightarrow \{Price\}

Inferred FDs:

<table>
<thead>
<tr>
<th>Inferred FD</th>
<th>Rule used</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. {Name, Category} \rightarrow {Name}</td>
<td>?</td>
</tr>
<tr>
<td>5. {Name, Category} \rightarrow {Color}</td>
<td>?</td>
</tr>
<tr>
<td>6. {Name, Category} \rightarrow {Category}</td>
<td>?</td>
</tr>
<tr>
<td>7. {Name, Category} \rightarrow {Color, Category}</td>
<td>?</td>
</tr>
<tr>
<td>8. {Name, Category} \rightarrow {Price}</td>
<td>?</td>
</tr>
</tbody>
</table>

Which / how many other FDs hold?
Finding Functional Dependencies

Example:

Inferred FDs:

<table>
<thead>
<tr>
<th>Inferred FD</th>
<th>Rule used</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. {Name, Category} -> {Name}</td>
<td>Trivial</td>
</tr>
<tr>
<td>5. {Name, Category} -> {Color}</td>
<td>Transitive (4 -> 1)</td>
</tr>
<tr>
<td>6. {Name, Category} -> {Category}</td>
<td>Trivial</td>
</tr>
<tr>
<td>7. {Name, Category} -> {Color, Category}</td>
<td>Split/combine (5 + 6)</td>
</tr>
<tr>
<td>8. {Name, Category} -> {Price}</td>
<td>Transitive (7 -> 3)</td>
</tr>
</tbody>
</table>

Provided FDs:

1. \{Name\} \rightarrow \{Color\}
2. \{Category\} \rightarrow \{Dept.\}
3. \{Color, Category\} \rightarrow \{Price\}

Can we find an algorithmic way to do this?

Yes. But we need to learn about closures before that!
Closures
Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$ and a set of FDs F:
Then the closure, $\{A_1, ..., A_n\}^+$ is the set of attributes B s.t. $\{A_1, ..., A_n\} \rightarrow B$

Example: $F = \{
\{\text{name}\} \rightarrow \{\text{color}\},
\{\text{category}\} \rightarrow \{\text{department}\},
\{\text{color}, \text{category}\} \rightarrow \{\text{price}\}\}$

Example Closures:
$\{\text{name}\}^+ = \{\text{name}, \text{color}\}$
$\{\text{name}, \text{category}\}^+ = \{\text{name}, \text{category}, \text{color}, \text{dept}, \text{price}\}$
$\{\text{color}\}^+ = \{\text{color}\}$
Closure Algorithm

Start with $X = \{A_1, \ldots, A_n\}$ and set of FDs F.

Repeat until X doesn’t change; do:

- if $\{B_1, \ldots, B_n\} \rightarrow C$ is in F
 and $\{B_1, \ldots, B_n\} \subseteq X$
 then add C to X.

Return X as X^+
Closure Algorithm

Start with $X = \{A_1, ..., A_n\}$, FDs F.

Repeat until X doesn’t change;
do:
 if $\{B_1, ..., B_n\} \rightarrow C$ is in F and $\{B_1, ..., B_n\} \subseteq X$:
 then add C to X.
Return X as X^+

$F =$

$\{\text{name}\} \rightarrow \{\text{color}\}$

$\{\text{category}\} \rightarrow \{\text{dept}\}$

$\{\text{color, category}\} \rightarrow \{\text{price}\}$

$\{\text{name, category}\}^+ =$

$\{\text{name, category}\}$
Closure Algorithm

Start with $X = \{A_1, \ldots, A_n\}$, FDs F.

Repeat until X doesn't change; do:

- if $\{B_1, \ldots, B_n\} \rightarrow C$ is in F and $\{B_1, \ldots, B_n\} \subseteq X$:
 - then add C to X.

Return X as X^+

$F = \{\text{name} \rightarrow \text{color}\}$

$\{\text{category} \rightarrow \text{dept}\}$

$\{\text{color, category} \rightarrow \text{price}\}$

$\{\text{name, category}\}^+ = \{\text{name, category}\}$

$\{\text{name, category}\}^+ = \{\text{name, category, color}\}$
Closure Algorithm

Start with $X = \{A_1, \ldots, A_n\}$, FDs F.
Repeat until X doesn’t change;
do:
 if $\{B_1, \ldots, B_n\} \rightarrow C$ is in F and $\{B_1, \ldots, B_n\} \subseteq X$:
 then add C to X.
Return X as X^+

$F =$

$\{\text{name}\} \rightarrow \{\text{color}\}$

$\{\text{category}\} \rightarrow \{\text{dept}\}$

$\{\text{color, category}\} \rightarrow \{\text{price}\}$

$\{\text{name, category}\}^+ =$

$\{\text{name, category}\}$

$\{\text{name, category}\}^+ =$

$\{\text{name, category, color}\}$

$\{\text{name, category}\}^+ =$

$\{\text{name, category, color, dept}\}$
Closure Algorithm

Start with $X = \{A_1, \ldots, A_n\}$, FDs F.

Repeat until X doesn’t change;

do:
 if $\{B_1, \ldots, B_n\} \rightarrow C$ is in F and $\{B_1, \ldots, B_n\} \subseteq X$:
 then add C to X.

Return X as X^+

$F = \{\{\text{name}\} \rightarrow \{\text{color}\}, \{\text{category}\} \rightarrow \{\text{dept}\}, \{\text{color, category}\} \rightarrow \{\text{price}\}\}$

\[
\begin{align*}
\{\text{name, category}\}^+ &= \{\text{name, category}\} \\
\{\text{name, category}\}^+ &= \{\text{name, category, color}\} \\
\{\text{name, category}\}^+ &= \{\text{name, category, color, dept}\} \\
\{\text{name, category}\}^+ &= \{\text{name, category, color, dept, price}\}
\end{align*}
\]
EXAMPLE

\[
\begin{align*}
\text{Compute } & \{A,B\}^+ = \{A, B, \} \\
\text{Compute } & \{A, F\}^+ = \{A, F, \}
\end{align*}
\]

\[
R(A,B,C,D,E,F) = \\
\{A,B\} \rightarrow \{C\} \\
\{A,D\} \rightarrow \{E\} \\
\{B\} \rightarrow \{D\} \\
\{A,F\} \rightarrow \{B\}
\]
EXAMPLE

\[R(A, B, C, D, E, F) \]
\[
\begin{align*}
\{A, B\} & \rightarrow \{C\} \\
\{A, D\} & \rightarrow \{E\} \\
\{B\} & \rightarrow \{D\} \\
\{A, F\} & \rightarrow \{B\}
\end{align*}
\]

Compute \(\{A, B\}^+ = \{A, B, C, D\} \)

Compute \(\{A, F\}^+ = \{A, F, B\} \)
EXAMPLE

\[R(A,B,C,D,E,F) \]

\begin{align*}
\{A,B\} & \rightarrow \{C\} \\
\{A,D\} & \rightarrow \{E\} \\
\{B\} & \rightarrow \{D\} \\
\{A,F\} & \rightarrow \{B\}
\end{align*}

Compute \(\{A,B\}^+ = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ = \{A, B, C, D, E, F\} \)
3. CLOSURES, SUPERKEYS & KEYS
What you will learn about in this section

1. Closures
2. Superkeys & Keys
Why Do We Need the Closure?

• With closure we can find all FD’s easily

• To check if $X \rightarrow A$

 1. Compute X^+

 2. Check if $A \subseteq X^+$

Note here that X is a set of attributes, but A is a single attribute. Why does considering FDs of this form suffice?

Recall the **Split/combine** rule:

$X \rightarrow A_1, ..., X \rightarrow A_n$

implies

$X \rightarrow \{A_1, ..., A_n\}$

Using Closure to Infer ALL FDs

Step 1: Compute X^+, for every set of attributes X:

- $\{A\}^+ = \{A\}$
- $\{B\}^+ = \{B,D\}$
- $\{C\}^+ = \{C\}$
- $\{D\}^+ = \{D\}$
- $\{A,B\}^+ = \{A,B,C,D\}$
- $\{A,C\}^+ = \{A,C\}$
- $\{A,D\}^+ = \{A,B,C,D\}$
- $\{A,B,C\}^+ = \{A,B,D\}^+ = \{A,C,D\}^+ = \{A,B,C,D\}$
- $\{B,C,D\}^+ = \{B,C,D\}$
- $\{A,B,C,D\}^+ = \{A,B,C,D\}$

Example:
Given $F =$

- $\{A,B\} \rightarrow C$
- $\{A,D\} \rightarrow B$
- $\{B\} \rightarrow D$

No need to compute these - why?

We did not include $\{B,C\}$, $\{B,D\}$, $\{C,D\}$, $\{B,C,D\}$ to save some space.
Using Closure to Infer ALL FDs

Example:
Given F =
{A,B} → C
{A,D} → B
{B} → D

Step 1: Compute X^+, for every set of attributes X:

$\{A\}^+ = \{A\}$, $\{B\}^+ = \{B,D\}$, $\{C\}^+ = \{C\}$, $\{D\}^+ = \{D\}$,
$\{A,B\}^+ = \{A,B,C,D\}$, $\{A,C\}^+ = \{A,C\}$,
$\{A,D\}^+ = \{A,B,C,D\}$, $\{A,B,C\}^+ = \{A,B,D\}^+ = \{A,B,C,D\}$,
$\{A,C,D\}^+ = \{A,B,C,D\}$, $\{B,C,D\}^+ = \{B,C,D\}$,
$\{A,B,C,D\}^+ = \{A,B,C,D\}$

Step 2: Enumerate all FDs $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

$\{A,B\} \rightarrow \{C,D\}$, $\{A,D\} \rightarrow \{B,C\}$,
$\{A,B,C\} \rightarrow \{D\}$, $\{A,B,D\} \rightarrow \{C\}$,
$\{A,C,D\} \rightarrow \{B\}$
Using Closure to Infer ALL FDs

Step 1: Compute X^+, for every set of attributes X:

\[
\begin{align*}
\{A\}^+ &= \{A\}, \quad \{B\}^+ = \{B, D\}, \quad \{C\}^+ = \{C\}, \quad \{D\}^+ = \{D\},
\{A, B\}^+ &= \{A, B, C, D\}, \quad \{A, C\}^+ = \{A, C\},
\{A, D\}^+ &= \{A, B, C, D\}, \quad \{A, B, C\}^+ = \{A, B, D\}^+ = \{A, C, D\}^+ = \{A, B, C, D\}, \quad \{B, C, D\}^+ = \{B, C, D\},
\{A, B, C, D\}^+ &= \{A, B, C, D\}.
\end{align*}
\]

Example:
Given $F =$
\[
\begin{align*}
\{A, B\} &\rightarrow C
\{A, D\} &\rightarrow B
\{B\} &\rightarrow D
\end{align*}
\]

Step 2: Enumerate all FDs $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

\[
\begin{align*}
\{A, B\} &\rightarrow \{C, D\}, \quad \{A, D\} \rightarrow \{B, C\},
\{A, B, C\} \rightarrow \{D\}, \quad \{A, B, D\} \rightarrow \{C\},
\{A, C, D\} \rightarrow \{B\}
\end{align*}
\]

“Y is in the closure of X”
Using Closure to Infer ALL FDs

Step 1: Compute X^+, for every set of attributes X:

Step 2: Enumerate all FDs $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

$\{A,B\} \rightarrow \{C,D\}$, $\{A,D\} \rightarrow \{B,C\}$,
$\{A,B,C\} \rightarrow \{D\}$, $\{A,B,D\} \rightarrow \{C\}$,
$\{A,C,D\} \rightarrow \{B\}$

Example:

Given $F = \{A,B\} \rightarrow C$
$\{A,D\} \rightarrow B$
$\{B\} \rightarrow D$

The FD $X \rightarrow Y$ is non-trivial
Superkeys and Keys
A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for *any other* attribute B in R, we have $\{A_1, ..., A_n\} \rightarrow B$

A **key** is a *minimal* superkey

I.e. all attributes are functionally determined by a superkey

Meaning that no subset of a key is also a superkey
Finding Keys and Superkeys

• For each set of attributes X

1. Compute X^+

2. If $X^+ = \text{set of all attributes}$ then X is a superkey

3. If X is minimal, then it is a key

Do we need to check all sets of attributes?
Example of Finding Keys

Product(name, price, category, color)

{name, category} \rightarrow price
{category} \rightarrow color

What is a key?
Example of Keys

Product(name, price, category, color)

\{
 \{name, category\} \rightarrow price
 \{category\} \rightarrow color
\}

\{name, category\}^* = \{name, price, category, color\}

= the set of all attributes

⇒ this is a superkey

⇒ this is a key, since neither name nor category alone is a superkey
• Some of the slides in this presentation are taken from the slides provided by the authors.
• Many of these slides are taken from cs145 course offered by Stanford University.
• Thanks to YouTube, especially to Dr. Daniel Soper for his useful videos.