
CSC 261/461 – Database Systems
Lecture 10 (part 2)

Spring 2018 



Announcement

• Read Chapter 14 and 15
• You must self-study these chapters
– Too huge to cover in Lectures

• Project 2 Part 1 due tonight



Agenda

1. Database Design

2. Normal forms & functional dependencies

3. Finding functional dependencies

4. Closures, superkeys & keys



Design Theory

• Design theory is about how to represent your data to avoid 
anomalies. 

• Achieved by Data Normalization, a process of analyzing a 
relation to ensure that it is well formed. 

• Normalization involves decomposing relations with 
anomalies to produce smaller well structured relations.

• If a relation is normalized (or well formed), rows can be 
inserted, deleted and modified without creating anomalies.



Normalization Example

• (Student ID) à (Student Name, DormName, DormCost)

• However, if 
– (DormName) à (DormCost)

Then, DormCost should be put into its own relation, resulting 
in:
(Student ID) à (Student Name, DormName)
(DormName) à ( DormCost)



Normalization Example

• (AttorneyID, ClientID) à (ClientName, MeetingDate, 
Duration)

• However, if 
– ClientID à ClientName

• Then: ClientName should be in its own relation:

• (AttorneyID, ClientID) à (MeetingDate, Duration)
• (ClientID) à (ClientName)



Normal Forms

• 1st Normal Form (1NF) = All tables are flat

• 2nd Normal Form = disused

• 3rd Normal Form (3NF)

• Boyce-Codd Normal Form (BCNF)

• 4th and 5th Normal Forms = see text books

DB designs based on 
functional dependencies, 
intended to prevent data 
anomalies



Normalization Steps

Table with 
multivalued 
attributes

Remove
multivalued 
attributes

First Normal 
Form (1NF)

First Normal 
Form (1NF)

Remove 
Partial 

Dependencies

Second 
Normal Form 

(2NF)

Second 
Normal 

Form (2NF)

Remove
Transitive 

Dependencies

Third Normal 
Form (3NF)



1st Normal Form (1NF)

Student Courses
Mary {CS145,CS229}
Joe {CS145,CS106}
… …

Violates 1NF. 

1NF Constraint: Types must be atomic!

Student Courses
Mary CS145
Mary CS229
Joe CS145
Joe CS106

In 1st NF



Data Anomalies & Constraints



Constraints Prevent (some) 
Anomalies in the Data

Student Course Room
Mary CSC261 101
Joe CSC261 101
Sam CSC261 101
.. .. ..

If every course is 
in only one room, 
contains 
redundant
information!

A poorly designed database causes 
anomalies:



Constraints Prevent (some) 
Anomalies in the Data

Student Course Room
Mary CSC261 101
Joe CSC261 703
Sam CSC261 101
.. .. ..

If we update the 
room number for 
one tuple, we get 
inconsistent data 
= an update
anomaly

A poorly designed database causes 
anomalies:



Constraints Prevent (some) 
Anomalies in the Data

Student Course Room
.. .. ..

If everyone drops the class, we lose what 
room the class is in! = a delete anomaly

A poorly designed database causes 
anomalies:



Constraints Prevent (some) 
Anomalies in the Data

Student Course Room
Mary CSC261 B01
Joe CSC261 B01
Sam CSC261 B01
.. .. ..

Similarly, we 
can’t reserve a 
room without 
students = an 
insert anomaly

A poorly designed database causes 
anomalies:

… CSC46
1

703



Constraints Prevent (some) 
Anomalies in the Data

Student Course
Mary CSC261
Joe CSC261
Sam CSC261
.. ..

Course Room
CSC261 101
CSC257 601

Today: develop theory to understand why this design 
may be  better and how to find this decomposition…

Is this form better?

• Redundancy? 
• Update anomaly? 
• Delete anomaly?
• Insert anomaly?



Functional Dependencies



Functional Dependencies for Dummies

• A relationship between attributes where one attribute (or 
group of attributes) determines the value of another 
attribute (or group of attributes) in the same table.

• Example:

SSN uniquely identify any Person

(SSN)  à (First Name, Last Name)



Candidate Keys/Primary Keys and Functional Dependencies

• By definition:

• A candidate key of a relation functionally determines all 
other non key attributes in the row.

• Implies:

• A primary key of a relation functionally determines all other 
non key attributes in the row. 

EmployeeID à (EmployeeName, EmpPhone)



Functional Dependency

A->B means that 
“whenever two tuples agree on A then they agree on B.”

Def: Let A,B be sets of attributes
We write A à B or say A functionally 
determines B if, for any tuples t1 and t2: 

t1[A] = t2[A] implies t1[B] = t2[B]
and we call A à B a functional dependency



A Picture Of FDs

A1 … Am B1 … Bn

Defn (again):
Given attribute sets A={A1,…,Am}
and B = {B1,…Bn} in R,



A Picture Of FDs

A1 … Am B1 … Bn

Defn (again):
Given attribute sets A={A1,…,Am}
and B = {B1,…Bn} in R,

The functional dependency Aà B 
on R holds if for any ti,tj in R:



A Picture Of FDs

Defn (again):
Given attribute sets A={A1,…,Am}
and B = {B1,…Bn} in R,

The functional dependency Aà B 
on R holds if for any ti,tj in R:

ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND … 
AND ti[Am] = tj[Am]

A1 … Am B1 … Bn

If t1,t2 agree here..

ti

tj



A Picture Of FDs

Defn (again):
Given attribute sets A={A1,…,Am}
and B = {B1,…Bn} in R,

The functional dependency Aà B 
on R holds if for any ti,tj in R:

if ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND 
… AND ti[Am] = tj[Am]

then ti[B1] = tj[B1] AND ti[B2]=tj[B2] 
AND … AND ti[Bn] = tj[Bn]

A1 … Am B1 … Bn

ti

tj

If t1,t2 agree here.. …they also agree here!



FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
• One which minimizes the possibility of anomalies



Functional Dependencies as Constraints

Student Course Room
Mary CS145 B01
Joe CS145 B01
Sam CS145 B01
.. .. ..

Note: The FD
{Course} -> {Room} holds on 

this instance

A functional dependency is a form 
of constraint

• Holds on some instances not 
others.

• Part of the schema, helps define 
a valid instance.

Recall: an instance of a schema is a multiset of 
tuples conforming to that schema, i.e. a table



Functional Dependencies as Constraints

Student Course Room
Mary CS145 B01
Joe CS145 B01
Sam CS145 B01
.. .. ..

However, cannot prove that the 
FD {Course} -> {Room} is part of 
the schema

Note that:
• You can check if an FD is 

violated by examining a single 
instance;

• However, you cannot prove
that an FD is part of the 
schema by examining a single 
instance. 
• This would require checking 

every valid instance



More Examples

An FD is a constraint which holds, or does not hold on 
an instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer



{Position}  à {Phone}

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876    ¬ Salesrep
E1111 Smith 9876    ¬ Salesrep
E9999 Mary 1234 Lawyer

More Examples



EmpID Name Phone Position
E0045 Smith 1234    ® Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234    ® Lawyer

but not {Phone}  à {Position}

More Examples



ACTIVITY

A B C D E

1 2 4 3 6
3 2 5 1 8
1 4 4 5 7
1 2 4 3 6
3 2 5 1 8

Find at least three FDs which 
hold on this instance:

{    } à {    }
{    } à {    }
{    } à {    }



FINDING FUNCTIONAL DEPENDENCIES



What you will learn about in this section

1. “Good” vs. “Bad” FDs: Intuition

2. Finding FDs

3. Closures



“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone, 
Position is “good FD”
• Minimal redundancy, 

less possibility of 
anomalies



“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone, 
Position is “good FD”

But Position -> Phone is a 
“bad FD”
• Redundancy!  

Possibility of data 
anomalies



Student Course Room
Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

.. .. ..

Given a set of FDs (from user) our goal is to:

1. Find all FDs, and 
2. Eliminate the “Bad Ones".

Returning to our original 

example… can you see how the 

“bad FD” {Course} -> {Room} could 

lead to an:

• Update Anomaly

• Insert Anomaly

• Delete Anomaly

• …

“Good” vs. “Bad” FDs



FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
1. One which minimizes possibility of anomalies



Finding Functional Dependencies

• There can be a very large number of FDs…
–How to find them all efficiently?

• We can’t necessarily show that any FD will hold on all 
instances…
–How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?



Equivalent to asking: Given a set of FDs, F = {f1,…fn}, does an 
FD g hold?

Inference problem: How do we decide?

Finding Functional Dependencies



Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Department}
3. {Color, Category} à {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which / how many other FDs do?!? 

Provided FDs:Products

Given the provided FDs, we can see that {Name, Category} à {Price} 
must also hold on any instance… 

Example:



Equivalent to asking: Given a set of FDs, F = {f1,…fn}, does an 
FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called 
Armstrong’s Rules.

1. Split/Combine,
2. Reduction, and
3. Transitivity… ideas by picture

Finding Functional Dependencies



1. Split/Combine (Decomposition & Union 
Rule)

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn



1. Split/Combine (Decomposition & Union 
Rule)

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn

… is equivalent to the following n FDs…

A1,…,Am à Bi for i=1,…,n



1. Split/Combine (Decomposition & Union 
Rule)

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn

… is equivalent to …

And vice-versa, A1,…,Am à Bi for i=1,…,n



2. Reduction/Trivial (Reflexive Rule)

A1 … Am

A1,…,Am à Aj for any j=1,…,m



3. Transitive Rule

A1 … Am B1 … Bn C1 … Ck

A1, …, Am à B1,…,Bn and
B1,…,Bn à C1,…,Ck



3. Transitive Rule

A1 … Am B1 … Bn C1 … Ck

A1, …, Am à B1,…,Bn and
B1,…,Bn à C1,…,Ck

implies
A1,…,Am à C1,…,Ck



Augmentation Rule

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn implies



Augmentation Rule

X1 A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn
implies
X1, A1, …, Am à B1,…,Bn



Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Department}
3. {Color, Category} à {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which / how many other FDs hold?

Provided FDs:Products

Example:



Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Dept.}
3. {Color, Category} à {Price}

Which / how many other FDs hold?

Provided FDs:

Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} ?
5. {Name, Category} -> {Color} ?
6. {Name, Category} -> {Category} ?
7. {Name, Category -> {Color, 
Category}

?

8. {Name, Category} -> {Price} ?



Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à
{Dept.}
3. {Color, Category} à
{Price}

Can we find an algorithmic way to do 
this?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} Trivial
5. {Name, Category} -> {Color} Transitive (4 -> 1)
6. {Name, Category} -> {Category} Trivial
7. {Name, Category -> {Color, 
Category}

Split/combine (5 + 
6)

8. {Name, Category} -> {Price} Transitive (7 -> 3)

Yes. But we need to learn about closures before 
that!



Closures



Closure of a set of Attributes

Given a set of attributes  A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An} à
B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F =

Example 
Closures:

{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}



Closure Algorithm

Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change; do:

if {B1, …, Bn} à C is in F 

and {B1, …, Bn} ⊆ X

then add C to X.

Return X as X+



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; 
do:

if {B1, …, Bn} à C is in F and {B1, 
…, Bn} ⊆ X:

then add C to X.
Return X as X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F =

{name, category}+ =
{name, category}



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; 
do:

if {B1, …, Bn} à C is in F and {B1, 
…, Bn} ⊆ X:

then add C to X.
Return X as X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; 
do:

if {B1, …, Bn} à C is in F and {B1, 
…, Bn} ⊆ X:

then add C to X.
Return X as X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; 
do:

if {B1, …, Bn} à C is in F and {B1, 
…, Bn} ⊆ X:

then add C to X.
Return X as X+

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color, dept, 
price}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}{name} à {color}

{category} à {dept}

{color, category} à
{price}



EXAMPLE

Compute {A,B}+ = {A, B,                             }

Compute {A, F}+ = {A, F,                             }

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}



EXAMPLE

Compute {A,B}+ = {A, B, C, D                          }

Compute {A, F}+ = {A, F, B                            }

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}



EXAMPLE

Compute {A,B}+ = {A, B, C, D, E}

Compute {A, F}+ = {A, B, C, D, E, F}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}



3. CLOSURES, SUPERKEYS & KEYS



What you will learn about in this section

1. Closures
2. Superkeys & Keys



Why Do We Need the Closure?

• With closure we can find all FD’s easily

• To check if X ®A

1. Compute X+

2. Check if A Î X+

Note here that X is a set of 
attributes, but A is a single
attribute.  Why does considering 
FDs of this form suffice?

Recall the Split/combine rule:
X à A1, …, X à An
implies
X à {A1, …, An}



Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B}   à D

Example:
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}
{B}+ = {B,D}
{C}+ = {C}
{D}+ = {D}
{A,B}+ = {A,B,C,D}
{A,C}+ = {A,C}
{A,D}+ = {A,B,C,D}
{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D} 
{B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}

No need to 
compute 
these- why?

We did not include {B,C}, 
{B,D}, {C,D}, {B,C,D} to save 
some space. 



Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B}   à D

Example:
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = 
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, 
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = 
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},    
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X à Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}



Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B}   à D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = 
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, 
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = 
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},    
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X à Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}

“Y is in the 
closure of 
X”

Step 1: Compute X+, for every set of attributes X:



Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B}   à D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = 
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, 
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = 
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},    
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X à Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}

The FD X à Y 
is non-trivial

Step 1: Compute X+, for every set of attributes X:



Superkeys and Keys



Keys and Superkeys

A superkey is a set of attributes A1, …, An s.t.
for any other attribute B in R,
we have  {A1, …, An} à B

A key is a minimal superkey

I.e. all attributes are 
functionally 
determined by a 
superkey

Meaning that no subset 
of a key is also a 
superkey



Finding Keys and Superkeys

• For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a superkey

3. If X is minimal, then it is a key

Do we need to check all 
sets of attributes? 



Example of Finding Keys

Product(name, price, category, 
color)
{name, category} à price
{category} à color

What is a key?



Example of Keys

Product(name, price, category, 
color)
{name, category} à price
{category} à color

{name, category}+ = {name, price, category, color}
= the set of all attributes
⟹ this is a superkey
⟹ this is a key, since neither name nor 
category alone is a superkey
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