CSC 261/461 — Database Systems
Lecture 10 (part 2)

Spring 2018

Announcement

* Read Chapter 14 and 15
* You must self-study these chapters

—Too huge to cover in Lectures

* Project 2 Part 1 due tonight

Agenda

1. Database Design

2. Normal forms & functional dependencies
3. Finding functional dependencies

4. Closures, superkeys & keys

Design Theory

Design theory 1s about how to represent your data to avoid
anomalies.

Achieved by Data Normalization, a process of analyzing a
relation to ensure that it 1s well formed.

Normalization ivolves decomposing relations with
anomalies to produce smaller well structured relations.

If a relation is normalized (or well formed), rows can be
iserted, deleted and modified without creating anomalies.

Normalization Example

* (Student ID) =2 (Student Name, DormName, DormCost)

 However, if
— (DormName) 2 (DormCost)

Then, DormCost should be put into its own relation, resulting
n:

(Student 1D) =2 (Student Name, DormName)
(DormName) 2 (DormCost)

Normalization Example

* (AttorneylD, ClientlD) = (ClientName, MeetingDate,

Duration)

 However, if
— ClientID = ChentName

e Then: ChientName should be in 1ts own relation:

* (AttorneylD, ClientlD) 2 (MeetingDate, Duration)
* (ChientlD) = (ClientName)

Normal Forms

' Normal Form (INF) = All tables are flat

21d Normal Form = disused

DB designs based on
__ functional dependencies,
intended to prevent data

Bovee-Codd Normal Form (BCNF) anomalies

3rd Normal Form (3NF)

—

4" and 5" Normal Forms = see text books

Normalization Steps

Table with HEMETE First Normal
multivalued multivalued
ibut attributes Form (1NF)
attributes
First Normal Remove second
Partial Normal Form
Form (1NF) Dependencies (2NF)
;econdl TRem.ci\-/e Third Normal
orma ransitive Form (3NF)

Form (ZNF) Dependencies

18t Normal Form (1NF)

Student Courses
Student Courses

Mary CS145

Mary {CS145,CS229}
Mary CS229

Joe {CS145,CS106}
Joe CS145
Joe CS106
Violates 1NF. In 15t NF

1NF Constraint: Types must be atomic!

Data Anomalies & Constraints

Constraints Prevent (some)
Anomalies in the Data

A poorly designed database causes
anomalies:

Student | Course { Room
Mary CSC261 | 101

If every course is

Joe C5C261 | 101 in only one room,
Sam CSC261 | 101 contains
redundant

information!

Constraints Prevent (some)
Anomalies in the Data

A poorly designed database causes
anomalies:

Student | Course | Room
If we update the
Mary C5C261 | 101 room number for
Joe CSC261 | /703 one tuple, we get

Sam CSC261 | 101 inconsistent data
= an update

anomaly

Constraints Prevent (some)
Anomalies in the Data

A poorly designed database causes
anomalies:

Student | Course ARoom

t |

If everyone drops the class, we lose what
room the class is in! = a delete anomaly

CSC46

703

Constraints Prevent (some)
Anomalies in the Data

A poorly designed database causes

anomalies:
Student | Course | Room
Mary CSC261 |BO1 Similarly, we
can’t reserve a
Joe CSC261 |BO1 e T
Sam CSC261 [BO1 students = an
insert anomaly

Constraints Prevent (some)
Anomalies in the Data

Is this form better?

Student | Course

R
Mary C5C261 Course oom * Redundancy?
Joe CSC261 C5C261 | 101 * Update anomaly?
Sam CSC261 CSC257 {601 * Delete anomaly?

* Insert anomaly?

Today: develop theory to understand why this design
may be better and how to find this decomposition...

Functional Dependencies

Functional Dependencies for Dummies

* A relationship between attributes where one attribute (or
group of attributes) determines the value of another
attribute (or group of attributes) in the same table.

* Example:

SSN uniquely identify any Person

(SSN) = (First Name, Last Name)

Candidate Keys/Primary Keys and Functional Dependencies

* By definition:
* A candidate key of a relation functionally determines all
other non key attributes in the row.

* Implies:
* A primary key of a relation functionally determines all other
non key attributes in the row.

EmployeelD = (EmployeeName, EmpPhone)

Functional Dependency

Def: Let A,B be sets of attributes
We write A = B or say A functionally
determines B if, for any tuples t; and t,:

t,[A] = t,[A] implies t,[B] = t,[B]

and we call A = B a functional dependency

A->B means that
“whenever two tuples agree on A then they agree on B.”

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A.,}
and B ={B,,...B,} inR,

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,}
and B ={B,,...B,} inR,

The functional dependency A—> B
on R holds if for any t,t; in R:

A Picture Of FDs

l I

If t1,t2 agree here..

Defn (again):

Given attribute sets A={A,,...,A}
and B ={B,,...B,}inR,

The functional dependency A—> B
on R holds if for any t,t; in R:

t[A1] = t[A,] AND £[A,]=t[A,] AND ...
AND t[A,] = tj[Am]

A Picture Of FDs

Defn (again):

l J

If t1,t2 agree here..

l J

...they also agree here!

Given attribute sets A={A;,...,A}
and B={B,,...B,} inR,

The functional dependency A=> B
on R holds if for any t,t; in R:

if t;[A,] = t;[A,] AND t;[A;]=t;[A,] AND
.. AND t[A] = t[A,]

then t;[B;] = t;[B;] AND t;[B,]=t;[B,]
AND ... AND t[B,] = t,[B,]

FDs for Relational Schema Design

* High-level idea: why do we care about IFDs?
1. Start with some relational schema
2. Find out its functional dependencies (IFDs)

3. Use these to design a better schema

* One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

A functional dependency is a form
of constraint

* Holds on some instances not
others.

* Part of the schema, helps define
a valid instance.

Recall: an instance of a schema is a multiset of
tuples conforming to that schema, i.e. a table

Student | Course | Room
Mary CS145 |BO1
Joe CS145 |(BO1
Sam CS145 |BO1

Note: The FD

{Course} -> {Room} holds on
this instance

Functional Dependencies as Constraints

Note that:

You can check if an FD is
violated by examining a single
instance;

However, you cannot prove
that an FD is part of the
schema by examining a single
instance.

* This would require checking
every valid instance

Student | Course | Room
Mary CS145 |BO1
Joe CS145 |BO1
Sam CS145 |BO1

However, cannot prove that the
FD {Course} -> {Room} is part of

the schema

More Examples

An FD is a constraint which holds, or does not hold on
an instance:

EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

More Examples

EmpID |Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

T

T

Ell111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

{Position} = {Phone}

More Examples

EmpID |Name Phone Position
E0045 Smith 1234 — [Clerk
E3542 Mike 9876 Salesrep
El111 Smith 9876 Salesrep
E9999 Mary 1234 — |Lawyer

but not {Phone} = {Position}

ACTIVITY

A B C D E
1 2 4 3 6
3 2 5 1 8
1 4 4 5 7
1 2 4 3 6
3 2 5 1 8

Find at least three FDs which
hold on this instance:

N
S adin adbn =
N2
e
S adbn adin =

FINDING FUNCTIONAL DEPENDENCIES

What you will learn about in this section

1. “Good” vs. “Bad” FDs: Intuition
2. Finding FDs

3. Closures

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID |Name |Phone |Position
(E0045 |Smith |1234 |Clerk |
E3542 |Mike 9876 Salesrep
EI111 |Smith [9876 Salesrep

E9999 | Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone,

Position is “good FD”

* Minimal redundancy,
less possibility of
anomalies

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID |Name |Phone |Position
E0045 |Smith [1234 Clerk
E3542 |Mike 9876 Salesrep
EI1111 |Smith || 9876 Salesrepj
E9999 | Mary 1234 Lawyer

Intuitively:

EmplD -> Name, Phone,
Position is “good FD”

But Position -> Phone is a

“bad FD”

* Redundancy!
Possibility of data
anomalies

“Good” vs. “Bad” FDs

Student | Course | Room
Mary CS145 |BO1
Joe CS145 |BO1
Sam CS145 |BO1

Returning to our original
example... can you see how the
“bad FD” {Course} -> {Room} could
lead to an:

* Update Anomaly

* Insert Anomaly

* Delete Anomaly

Given a set of FDs (from user) our goal is to:

1. Find all FDs, and

2. Eliminate the “Bad Ones".

FDs for Relational Schema Design

* High-level idea: why do we care about IFDs?
1. Start with some relational schema
2. Find out its functional dependencies (FDs)

3. Use these to design a better schema

1. One which minimizes possibility of anomalies

Finding Functional Dependencies

* There can be a very large number of F'Ds...
— How to find them all efficiently?

* We can’t necessarily show that any 'D will hold on all
instances...

— How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?

Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, ¥ = {f,,...f }, does an
FD g hold?

Inference problem: How do we decide?

Finding Functional Dependencies

Example:
Products

Name | Color | Category | Dep | Price
Gizmo |[Green |Gadget |Toys 49
Widget |Black |Gadget |[Toys 59
Gizmo |[Green |Whatsit |Garden |99

Provided FDs:

1. {Name} = {Color}

2. {Category} = {Department}
3. {Color, Category} = {Price}

Given the provided FDs, we can see that {Name, Category} = {Price}
must also hold on any instance...

Which / how many other FDs do?!?

Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, ¥ = {f,,...f }, does an
FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called
Armstrong’s Rules.
1. Split/Combine,
2. Reduction, and
3. Transitivity... ideas by picture

1. Split/Combine (Decomposition & Union
Rule)

A, ... A > B,..B,

1. Split/Combine (Decomposition & Union
Rule)

A, ... A > B,..B,

... is equivalent to the following n FDs...

A,,... A, =2 B fori=1,..,n

1. Split/Combine (Decomposition & Union
Rule)

And vice-versa, A,,..., A, = B. fori=1,...,n

... is equivalent to ...

A, ... A. > B,,..B,

2. Reduction/Trivial (Reflexive Rule)

Ay,..., A, 2 A forany j=1,.,m

3. Transitive Rule

A, .. A, B,..,B and
B,,...B. > C,,....C,

3. Transitive Rule

A, .. A, B,..,B and
B,,...B. > C,,....C,

implies
A,... A, 2 C,..C,

Augmentation Rule

A, .., A, =2 B,..B, implies

Augmentation Rule

A, .., A, =2 B,..,B,
implies
X, A, ..., A, =2 By,...,B,

Finding Functional Dependencies

Example:
Products
Name | Color | Category | Dep | Price
Gizmo |[Green |Gadget |Toys 49
Widget |Black |Gadget |[Toys 59
Gizmo |[Green |Whatsit |Garden |99

Provided FDs:

1. {Name} - {Color}
2. {Category} = {Department}
3. {Color, Category} = {Price}

Which / how many other FDs hold?

Finding Functional Dependencies

Example:

Inferred FDs:

Provided FDs:

1. {Name} = {Color}
2. {Category} = {Dept.}
3. {Color, Category} = {Price}

4. {Name, Category} -> {Name} ?
5. {Name, Category} -> {Color} ?
6. {Name, Category} -> {Category} ?
7. {Name, Category -> {Color, ?
Category}

8. {Name, Category} -> {Price} ?

Which / how many other FDs hold?

Finding Functional Dependencies

Example:

Inferred FDs: Provided FDs:

1 {Name} > {Color]
4. {Name, Category} -> {Name} Trivial 2. {Category} 2>

5. {Name, Category} -> {Color} Transitive (4 -> 1) {Dept.}

— 3. {Color, Category} 2>

6. {Name, Category} -> {Category} Trivial {Price}

7. {Name, Category -> {Color, Split/combine (5 +

Category} 6)

8. {Name, Category} -> {Price} Transitive (7 -> 3)

Can we find an algorithmic way to do
this?

Yes. But we need to learn about closures before
that!

Closures

Closure of a set of Attributes

Given a set of attributes A, ..., A, and a set of FDs F:

Then the closure, {A,, ..., A} is the set of attributes Bs.t. {A,, ..., A} 2
B

Example: F=|{name} > {color}
{category} > {department}
{color, category} > {price}

Example {name}* = {name, color}

Closures: iname, category}* =

{name, category, color, dept, price}
{color}* = {color}

Closure Algorithm

Start with X={A, ..., A,} and set of FDs F.
Repeat until X doesn’t change; do:
if {B;,...,B,} 2 CisinF
and {B,, ..., B,} © X
then add Cto X.

Return X as X*

Closure Algorithm

Start with X={A,, ..., A}, FDs F.
Repeat until X doesn’t change;
do:
if {B, ..., B,} =2 CisinFand {B,,
., B} € X:
then add C to X.
Return X as X*

{name, category}+ =
{name, category}

{name} > {color}
{category} > {dept}

{color, category} =
{price}

Closure Algorithm

Start with X = {A, ..., A.}, FDs F. =
Repeat until X doesn’t change;

do:

if {B, ..., B,} =2 CisinFand {B,,

{name, category}t =
., B} € X: Jory

{name, category, color}

then add C to X.
Return X as X*

{name} > {color}
{category} > {dept}

{color, category} =
{price}

Closure Algorithm

Start with X = {A, ..., A.}, FDs F. =
Repeat until X doesn’t change;

do:

if {B, ..., B,} =2 CisinFand {B,, _
., B} € X:
then add Cto X.

Return X as X*

{name, category}+ =

{name} > {color} {name, category, color, dept}

{category} > {dept}

{color, category} =
{price}

Closure Algorithm

Start with X = {A, ..., A.}, FDs F. =
Repeat until X doesn’t change;

do:

if {B, ..., B,} =2 CisinFand {B,, _
., B} € X:
then add Cto X.

Return X as X*

{name} > {color}

{category} > {dept} {name, category}* =

{name, category, color, dept,

icolor, category}; - price}

{price}

EXAMPLE

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B}* = {A, B,

Compute {A, F}¥ ={A, F,

EXAMPLE

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B}Y={A,B,C, D

Compute {A, F}* ={A, F, B

EXAMPLE

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B} ={A, B, C, D, E}

Compute {A, F}*={A, B, C, D, E, F}

3. CLOSURES, SUPERKEYS & KEYS

What you will learn about in this section

1. Closures
2. Superkeys & Keys

Why Do We Need the Closure?

* With closure we can find all FD’s easily

e To checkif X =5 A

1. Compute X' Note here that X is a set of
attributes, but A is a single
attribute. Why does considering

9. Check if A(@ X+ FDs of this form suffice?

Recall the Split/combine rule:
XDA, . XDA

implies

X>{A,, .., A}

Using Closure to Infer ALL FDs

Example: | {A B} > C

Step 1: Compute X*, for every set of attributes X; ©VenF= |{A,D} > B
{B} >D

{A}* = {A}
{B}* = {B,D}
{C} = {C}
{D}+ = {D}
{A,B}* = {A,B,C,D}
{A,C}* = {A,C}
{A,D}* = {A,B,C,D} No need to
{A,B,C}* = {A,B,D}* = {A,C,D}* = {A,B,C,0} M) compute
{B,C,D}*= {B,C,D} these- why?

{A,B,C,D}* = {A,B,C,D}

We did not include {B,C},
{B,D}, {C,D}, {B,C,D} to save
some space.

Using Closure to Infer ALL FDs

Step 1: Compute X*, for every set of attributes X:

Example:
Given F =

1Ar* = {A}, {B}*= 1{B,D}, {C}* = {C}, {D}*
{D}, {A,B}* = {A,B,C,D}, {A,C} = {A,C},

{A,D}* = {A,B,C,D}, {A,B,C}* = {A,B,D}* =
{A,C,D} = {A,B,C,D}, {B,C,D}*= {B,C,D},
{A,B,C,D}* = {A,B,C,D}

Step 2: Enumerate all FDs X 2 Y, st. Yc Xfand XN Y = U:

{A,B} > {C,D}, {A,D} > {B,C},
{A,B,C} > {D}, {A,B,D} > {C},
{A,C,D} > {B}

Using Closure to Infer ALL

Step 1: Compute X*, for every set of attributes X:

FDs

Example:
Given F =

1Ar* = {A}, {B}*= 1{B,D}, {C}* = {C}, {D}*
{D}, {A,B}* = {A,B,C,D}, {A,C} = {A,C},

{A,D}* = {A,B,C,D}, {A,B,C}* = {A,B,D}* =
{A,C,D} = {A,B,C,D}, {B,C,D}*= {B,C,D},
{A,B,C,D}* = {A,B,C,D}

Step 2: Enumerate all FDs X 2 Y, s.t| Y © Xfland X N Y = &:

{A,B} > {C,D}, {A,D} > {B,C},
{A,B,C} > {D}, {A,B,D} > {C},
{A,C,D} > {B}

“Y s in the

closure of
XII

Using Closure to Infer ALL FDs

Example:
Given F =

Step 1: Compute X*, for every set of attributes X:

1A}t = {A}, {B}*= 1{B,D}, {C}* = {C}, {D}* =
{D}, {A,B}* = {A,B,C,D}, {A,C} = {A,C},
{A,D}* = {A,B,C,D}, {A,B,C}* = {A,B,D}* =
{A,C,D} = {A,B,C,D}, {B,C,D}*= {B,C,D},
{A,B,C,D}* = {A,B,C,D}

Step 2: Enumerate all FDs X 2 Y, s.t. Yc Xfand X " Y = J:

{A,B} > {C,D}, {A,D} > {B,C},
{A,B,C} > {D}, {A,B,D} > {C},
{A,C,D} > {B}

The FDX 2Y
is non-trivial

Superkeys and Keys

Keys and Superkeys

A superkey is a set of attributes Ay, ..., A, S.t. | all attributes are

for any other attribute B in R, functionally

we have {A,, ..., A }> B determined by a
superkey

Meaning that no subset
of a key is also a
superkey

A key is a minimal superkey

Finding Keys and Superkeys

* For each set of attributes X
1. Compute X*
2. If X' = set of all attributes then X is a superkey

3. If X 1s mimimal, then it 1s a key

Do we need to check all
sets of attributes?

Example of Finding Keys

Product(name, price, category,
color)

{name, category} > price
{category} = color

What is a key?

Example of Keys

Product(name, price, category,
color)

{name, category} > price
{category} = color

{name, category}* = {name, price, category, color}
= the set of all attributes
= this is a superkey
= this is a key, since neither name nor
category alone is a superkey

Acknowledgement

* Some of the slides in this presentation are taken from the

slides provided by the authors.

* Many of these slides are taken from csi45 course offered by
Stanford University.

* Thanks to You'lube, especially to Dr. Daniel Soper for his

useful videos.

