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Announcement

• Read the textbook!
– Chapter 8: 
• Will cover later; But self-study the chapter
• Section 8.1 – 8.5

– Chapter 14: 
• Section 14.1 – 14.5

– Chapter 15:
• Section 15.1 – 15.4



Agenda

1. Finding functional dependencies

2. Closures, superkeys & keys



FINDING FUNCTIONAL DEPENDENCIES



What you will learn about in this section

1. “Good” vs. “Bad” FDs: Intuition

2. Finding FDs

3. Closures



“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone, 
Position is “good FD”
• Minimal redundancy, 

less possibility of 
anomalies



“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone, 
Position is “good FD”

But Position -> Phone is a 
“bad FD”
• Redundancy!  

Possibility of data 
anomalies



Student Course Room
Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

.. .. ..

Given a set of FDs (from user) our goal is to:

1. Find all FDs, and 
2. Eliminate the “Bad Ones".

Returning to our original 

example… can you see how the 

“bad FD” {Course} -> {Room} could 

lead to an:

• Update Anomaly

• Insert Anomaly

• Delete Anomaly

• …

“Good” vs. “Bad” FDs



Recall: What about this?

Employees

lot

name

ssn

Manages Departments

budget

dname

did

since

1 N

CREATE TABLE Employee_Mgr( ssn char(11),
name varchar(30),
lot integer,
since date,
did integer,

PRIMARY KEY (ssn, did),
FOREIGN KEY (did) REFERENCES Departments (did) 
ON DELETE RESTRICT,
)

Possible. But…

Our Next topic…
It’s an example 
of  bad 
Functional 
Dependency



Why exactly is it bad?

• ssn à name, lot

• did à ssn, since

• Wow.. Now it looks like did is the primary key for Employee 
Relation !!!

• did à ssn, since, name, lot

Transitive dependency. 
did  à ssn à name

We have to normalize this table!

Moreover, for making (ssn, did) as the primary key, we 
should have more departments than the number of 
employees (to avoid ‘null’ departments).
In real life, this will be almost never be the case. 



Recall: Better way of doing it (Option 3)

Employees

lot

name

ssn

Manages Departments

budget

dname

did

since

1 N

CREATE TABLE Dept_Mgr( did integer
dname varchar(30),
budget float(30),
ssn char(11),
since date,

PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees ON DELETE SET NULL,
) did  à dname, budget, ssn, since

It’s a good relation. No need to normalize it



FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
1. One which minimizes possibility of anomalies



Finding Functional Dependencies

• There can be a very large number of FDs…
– How to find them all efficiently?

• We can’t necessarily show that any FD will hold on all 
instances…
– How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?



Equivalent to asking: Given a set of FDs, F = {f1,…fn}, does an FD g 
hold?

Inference problem: How do we decide?

Finding Functional Dependencies



Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Department}
3. {Color, Category} à {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which / how many other FDs do?!? 

Provided FDs:Products

Given the provided FDs, we can see that {Name, Category} à {Price} 
must also hold on any instance… 

Example:



Equivalent to asking: Given a set of FDs, F = {f1,…fn}, does an FD g 
hold?

Inference problem: How do we decide?

Answer: Three simple rules called 
Armstrong’s Rules.

1. Split/Combine,
2. Reduction, and
3. Transitivity… ideas by picture

Finding Functional Dependencies



1. Split/Combine (Decomposition & Union 
Rule)

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn



1. Split/Combine (Decomposition & Union 
Rule)

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn

… is equivalent to the following n FDs…

A1,…,Am à Bi for i=1,…,n



1. Split/Combine (Decomposition & Union 
Rule)

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn

… is equivalent to …

And vice-versa, A1,…,Am à Bi for i=1,…,n



2. Reduction/Trivial (Reflexive Rule)

A1 … Am

A1,…,Am à Aj for any j=1,…,m



3. Transitive Rule

A1 … Am B1 … Bn C1 … Ck

A1, …, Am à B1,…,Bn and
B1,…,Bn à C1,…,Ck



3. Transitive Rule

A1 … Am B1 … Bn C1 … Ck

A1, …, Am à B1,…,Bn and
B1,…,Bn à C1,…,Ck

implies
A1,…,Am à C1,…,Ck



Augmentation Rule

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn implies



Augmentation Rule

X1 A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn
implies
X1, A1, …, Am à B1,…,Bn



Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Department}
3. {Color, Category} à {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which / how many other FDs hold?

Provided FDs:Products

Example:



Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Dept.}
3. {Color, Category} à {Price}

Which / how many other FDs hold?

Provided FDs:

Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} ?
5. {Name, Category} -> {Color} ?
6. {Name, Category} -> {Category} ?
7. {Name, Category -> {Color, 
Category}

?

8. {Name, Category} -> {Price} ?



Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à
{Dept.}
3. {Color, Category} à
{Price}

Can we find an algorithmic way to do 
this?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} Trivial
5. {Name, Category} -> {Color} Transitive (4 -> 1)
6. {Name, Category} -> {Category} Trivial
7. {Name, Category -> {Color, 
Category}

Split/combine (5 + 
6)

8. {Name, Category} -> {Price} Transitive (7 -> 3)

Yes. But we need to learn about closures before 
that!



Closures



Closure of a set of Attributes

Given a set of attributes  A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An} à
B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F =

Example 
Closures:

{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}



Closure Algorithm

Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change; do:

if {B1, …, Bn} à C is in F 

and {B1, …, Bn} ⊆ X

then add C to X.

Return X as X+



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; 
do:

if {B1, …, Bn} à C is in F and {B1, 
…, Bn} ⊆ X:

then add C to X.
Return X as X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F =

{name, category}+ =
{name, category}



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; 
do:

if {B1, …, Bn} à C is in F and {B1, 
…, Bn} ⊆ X:

then add C to X.
Return X as X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; 
do:

if {B1, …, Bn} à C is in F and {B1, 
…, Bn} ⊆ X:

then add C to X.
Return X as X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; 
do:

if {B1, …, Bn} à C is in F and {B1, 
…, Bn} ⊆ X:

then add C to X.
Return X as X+

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color, dept, 
price}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}{name} à {color}

{category} à {dept}

{color, category} à
{price}



EXAMPLE

Compute {A,B}+ = {A, B,                             }

Compute {A, F}+ = {A, F,                             }

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}



EXAMPLE

Compute {A,B}+ = {A, B, C, D                          }

Compute {A, F}+ = {A, F, B                            }

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}



EXAMPLE

Compute {A,B}+ = {A, B, C, D, E}

Compute {A, F}+ = {A, B, C, D, E, F}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}



3. CLOSURES, SUPERKEYS & KEYS



What you will learn about in this section

1. Closures
2. Superkeys & Keys



Why Do We Need the Closure?

• With closure we can find all FD’s easily

• To check if X ® A

1. Compute X+

2. Check if A Î X+

Note here that X is a set of 

attributes, but A is a single
attribute.  Why does considering 

FDs of this form suffice?

Recall the Split/combine rule:

X à A1, …, X à An

implies
X à {A1, …, An}



Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B}   à D

Example:
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}
{B}+ = {B,D}
{C}+ = {C}
{D}+ = {D}
{A,B}+ = {A,B,C,D}
{A,C}+ = {A,C}
{A,D}+ = {A,B,C,D}
{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D} 
{B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}

No need to 
compute 
these- why?

We did not include {B,C}, 
{B,D}, {C,D}, {B,C,D} to save 
some space. 



Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B}   à D

Example:
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = 
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, 
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = 
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},    
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X à Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}



Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B}   à D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = 
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, 
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = 
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},    
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X à Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}

“Y is in the 
closure of 
X”

Step 1: Compute X+, for every set of attributes X:



Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B}   à D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = 
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, 
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = 
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},    
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X à Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}

The FD X à Y 
is non-trivial

Step 1: Compute X+, for every set of attributes X:



Superkeys and Keys



Keys and Superkeys

A superkey is a set of attributes A1, …, An s.t.
for any other attribute B in R,
we have  {A1, …, An} à B

A key is a minimal superkey

I.e. all attributes are 
functionally 
determined by a 
superkey

Meaning that no subset 
of a key is also a 
superkey



Finding Keys and Superkeys

• For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a superkey

3. If X is minimal, then it is a key

Do we need to check all 
sets of attributes? 



Example of Finding Keys

Product(name, price, category, 
color)
{name, category} à price
{category} à color

What is a key?



Example of Keys

Product(name, price, category, 
color)
{name, category} à price
{category} à color

{name, category}+ = {name, price, category, color}
= the set of all attributes
⟹ this is a superkey
⟹ this is a key, since neither name nor 
category alone is a superkey
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