CSC 261/461 — Database Systems
Lecture 11

Spring 2018

Announcement

Read the textbook!

— Chapter 8:
* Will cover later; But self-study the chapter

* Section 8.1-8.5

— Chapter 14:
* Section 14.1 -14.5

— Chapter 15:
* Section 15.1-15.4

Agenda

1. Finding functional dependencies

2. Closures, superkeys & keys

FINDING FUNCTIONAL DEPENDENCIES

What you will learn about in this section

1. “Good” vs. “Bad” FDs: Intuition
2. Finding FDs

3. Closures

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID |Name |Phone |Position
(E0045 |Smith |1234 |Clerk |
E3542 |Mike 9876 Salesrep
EI111 |Smith [9876 Salesrep

E9999 | Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone,

Position is “good FD”

* Minimal redundancy,
less possibility of
anomalies

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID |Name |Phone |Position
E0045 |Smith [1234 Clerk
E3542 |Mike 9876 Salesrep
EI1111 |Smith || 9876 Salesrepj
E9999 | Mary 1234 Lawyer

Intuitively:

EmplD -> Name, Phone,
Position is “good FD”

But Position -> Phone is a

“bad FD”

* Redundancy!
Possibility of data
anomalies

“Good” vs. “Bad” FDs

Student | Course | Room
Mary CS145 |BO1
Joe CS145 |BO1
Sam CS145 |BO1

Returning to our original
example... can you see how the
“bad FD” {Course} -> {Room} could
lead to an:

* Update Anomaly

* Insert Anomaly

* Delete Anomaly

Given a set of FDs (from user) our goal is to:

1. Find all FDs, and

2. Eliminate the “Bad Ones".

Recall: What about this?

@ @&

Employees

‘ Departments

CREATE TABLE Employee Mgr(ssn char(11),
name varchar (30),
lot integer,
since date,

did integer,

PRIMARY KEY (ssn, did),
FOREIGN KEY (did) REFERENCES Departments (did)
ON DELETE RESTRICT,

)

Possible. But...

Our Next topic...
It’s an example
of bad
Functional
Dependency

Why exactly is it bad?

ssh = name, lot
did = ssn, since

Wow.. Now it looks like did is the primary key for Employee
Relation !!!

Transitive dependency.

did = ssn 2 name
We have to normalize this table!

did = ssn, since, name, lot

Recall: Better way of doing it (Option 3)

=

@

1 N
Employees Departments

CREATE TABLE Dept Mgr (did integer
dname wvarchar (30),
budget float (30),
ssn char(11l),
since date,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees ON DELETE SET NULL,
)

did = dname, budget, ssn, since

It’s a good relation. No need to normalize it

FDs for Relational Schema Design

* High-level idea: why do we care about FDs?
1. Start with some relational schema
2. Find out its functional dependencies (FDs)

3. Use these to design a better schema

1. One which minimizes possibility of anomalies

Finding Functional Dependencies

* There can be a very large number of FDs...
— How to find them all efficiently?

* We can’t necessarily show that any FD will hold on all
instances...

— How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?

Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, F = {f,,...f.}, doesan FD g
hold?

Inference problem: How do we decide?

Finding Functional Dependencies

Example:
Products

Name | Color | Category | Dep | Price
Gizmo |[Green |Gadget |Toys 49
Widget |Black |Gadget |[Toys 59
Gizmo |[Green |Whatsit |Garden |99

Provided FDs:

1. {Name} = {Color}

2. {Category} = {Department}
3. {Color, Category} = {Price}

Given the provided FDs, we can see that {Name, Category} = {Price}
must also hold on any instance...

Which / how many other FDs do?!?

Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, F = {f,,...f.}, doesan FD g
hold?

Inference problem: How do we decide?

Answer: Three simple rules called
Armstrong’s Rules.
1. Split/Combine,
2. Reduction, and
3. Transitivity... ideas by picture

1. Split/Combine (Decomposition & Union
Rule)

A, ... A > B,..B,

1. Split/Combine (Decomposition & Union
Rule)

A, ... A > B,..B,

... is equivalent to the following n FDs...

A,,... A, =2 B fori=1,..,n

1. Split/Combine (Decomposition & Union
Rule)

And vice-versa, A,,..., A, = B. fori=1,...,n

... is equivalent to ...

A, ... A. > B,,..B,

2. Reduction/Trivial (Reflexive Rule)

Ay,..., A, 2 A forany j=1,.,m

3. Transitive Rule

A, .. A, B,..,B and
B,,...B. > C,,....C,

3. Transitive Rule

A, .. A, B,..,B and
B,,...B. > C,,....C,

implies
A,... A, 2 C,..C,

Augmentation Rule

A, .., A, =2 B,..B, implies

Augmentation Rule

A, .., A, =2 B,..,B,
implies
X, A, ..., A, =2 By,...,B,

Finding Functional Dependencies

Example:
Products
Name | Color | Category | Dep | Price
Gizmo |[Green |Gadget |Toys 49
Widget |Black |Gadget |[Toys 59
Gizmo |[Green |Whatsit |Garden |99

Provided FDs:

1. {Name} - {Color}
2. {Category} = {Department}
3. {Color, Category} = {Price}

Which / how many other FDs hold?

Finding Functional Dependencies

Example:

Inferred FDs:

Provided FDs:

1. {Name} = {Color}
2. {Category} = {Dept.}
3. {Color, Category} = {Price}

4. {Name, Category} -> {Name} ?
5. {Name, Category} -> {Color} ?
6. {Name, Category} -> {Category} ?
7. {Name, Category -> {Color, ?
Category}

8. {Name, Category} -> {Price} ?

Which / how many other FDs hold?

Finding Functional Dependencies

Example:

Inferred FDs: Provided FDs:

1 {Name} > {Color]
4. {Name, Category} -> {Name} Trivial 2. {Category} 2>

5. {Name, Category} -> {Color} Transitive (4 -> 1) {Dept.}

— 3. {Color, Category} 2>

6. {Name, Category} -> {Category} Trivial {Price}

7. {Name, Category -> {Color, Split/combine (5 +

Category} 6)

8. {Name, Category} -> {Price} Transitive (7 -> 3)

Can we find an algorithmic way to do
this?

Yes. But we need to learn about closures before
that!

Closures

Closure of a set of Attributes

Given a set of attributes A, ..., A, and a set of FDs F:

Then the closure, {A,, ..., A} is the set of attributes Bs.t. {A,, ..., A} 2
B

Example: F=|{name} > {color}
{category} > {department}
{color, category} > {price}

Example {name}* = {name, color}

Closures: iname, category}* =

{name, category, color, dept, price}
{color}* = {color}

Closure Algorithm

Start with X={A, ..., A,} and set of FDs F.
Repeat until X doesn’t change; do:
if {B;,...,B,} 2 CisinF
and {B,, ..., B,} © X
then add Cto X.

Return X as X*

Closure Algorithm

Start with X={A,, ..., A}, FDs F.
Repeat until X doesn’t change;
do:
if {B, ..., B,} =2 CisinFand {B,,
., B} € X:
then add C to X.
Return X as X*

{name, category}+ =
{name, category}

{name} > {color}
{category} > {dept}

{color, category} =
{price}

Closure Algorithm

Start with X = {A, ..., A.}, FDs F. =
Repeat until X doesn’t change;

do:

if {B, ..., B,} =2 CisinFand {B,,

{name, category}t =
., B} € X: Jory

{name, category, color}

then add C to X.
Return X as X*

{name} > {color}
{category} > {dept}

{color, category} =
{price}

Closure Algorithm

Start with X = {A, ..., A.}, FDs F. =
Repeat until X doesn’t change;

do:

if {B, ..., B,} =2 CisinFand {B,, _
., B} € X:
then add Cto X.

Return X as X*

{name, category}+ =

{name} > {color} {name, category, color, dept}

{category} > {dept}

{color, category} =
{price}

Closure Algorithm

Start with X = {A, ..., A.}, FDs F. =
Repeat until X doesn’t change;

do:

if {B, ..., B,} =2 CisinFand {B,, _
., B} € X:
then add Cto X.

Return X as X*

{name} > {color}

{category} > {dept} {name, category}* =

{name, category, color, dept,

icolor, category}; - price}

{price}

EXAMPLE

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B}* = {A, B,

Compute {A, F}¥ ={A, F,

EXAMPLE

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B}Y={A,B,C, D

Compute {A, F}* ={A, F, B

EXAMPLE

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B} ={A, B, C, D, E}

Compute {A, F}*={A, B, C, D, E, F}

3. CLOSURES, SUPERKEYS & KEYS

What you will learn about in this section

1. Closures
2. Superkeys & Keys

Why Do We Need the Closure?

* With closure we can find all FD’s easily

e TocheckifX—> A

1. Compute X* / Note here that X is a set of
attributes, but A is a single
attribute. Why does considering

2. Check if A Xy FDs of this form suffice?

Recall the Split/combine rule:
XDA, . XDA

implies

X>{A,, .., A}

Using Closure to Infer ALL FDs

Example: | {A B} > C

Step 1: Compute X*, for every set of attributes X; ©VenF= |{A,D} > B
{B} >D

{A}* = {A}
{B}* = {B,D}
{C} = {C}
{D}+ = {D}
{A,B}* = {A,B,C,D}
{A,C}* = {A,C}
{A,D}* = {A,B,C,D} No need to
{A,B,C}* = {A,B,D}* = {A,C,D}* = {A,B,C,0} M) compute
{B,C,D}*= {B,C,D} these- why?

{A,B,C,D}* = {A,B,C,D}

We did not include {B,C},
{B,D}, {C,D}, {B,C,D} to save
some space.

Using Closure to Infer ALL FDs

Step 1: Compute X*, for every set of attributes X:

Example:
Given F =

1Ar* = {A}, {B}*= 1{B,D}, {C}* = {C}, {D}*
{D}, {A,B}* = {A,B,C,D}, {A,C} = {A,C},

{A,D}* = {A,B,C,D}, {A,B,C}* = {A,B,D}* =
{A,C,D} = {A,B,C,D}, {B,C,D}*= {B,C,D},
{A,B,C,D}* = {A,B,C,D}

Step 2: Enumerate all FDs X 2 Y, st. Yc Xfand XN Y = U:

{A,B} > {C,D}, {A,D} > {B,C},
{A,B,C} > {D}, {A,B,D} > {C},
{A,C,D} > {B}

Using Closure to Infer ALL

Step 1: Compute X*, for every set of attributes X:

FDs

Example:
Given F =

1Ar* = {A}, {B}*= 1{B,D}, {C}* = {C}, {D}*
{D}, {A,B}* = {A,B,C,D}, {A,C} = {A,C},

{A,D}* = {A,B,C,D}, {A,B,C}* = {A,B,D}* =
{A,C,D} = {A,B,C,D}, {B,C,D}*= {B,C,D},
{A,B,C,D}* = {A,B,C,D}

Step 2: Enumerate all FDs X 2 Y, s.t| Y © Xfland X N Y = &:

{A,B} > {C,D}, {A,D} > {B,C},
{A,B,C} > {D}, {A,B,D} > {C},
{A,C,D} > {B}

“Y s in the

closure of
XII

Using Closure to Infer ALL FDs

Example:
Given F =

Step 1: Compute X*, for every set of attributes X:

1A}t = {A}, {B}*= 1{B,D}, {C}* = {C}, {D}* =
{D}, {A,B}* = {A,B,C,D}, {A,C} = {A,C},
{A,D}* = {A,B,C,D}, {A,B,C}* = {A,B,D}* =
{A,C,D} = {A,B,C,D}, {B,C,D}*= {B,C,D},
{A,B,C,D}* = {A,B,C,D}

Step 2: Enumerate all FDs X 2 Y, s.t. Yc Xfand X " Y = J:

{A,B} > {C,D}, {A,D} > {B,C},
{A,B,C} > {D}, {A,B,D} > {C},
{A,C,D} > {B}

The FDX 2Y
is non-trivial

Superkeys and Keys

Keys and Superkeys

A superkey is a set of attributes Ay, ..., A, S.t. | all attributes are

for any other attribute B in R, functionally

we have {A,, ..., A }> B determined by a
superkey

Meaning that no subset
of a key is also a
superkey

A key is a minimal superkey

Finding Keys and Superkeys

* For each set of attributes X
1. Compute X*
2. If X*=set of all attributes then X is a superkey

3. If X'is minimal, then it is a key

Do we need to check all
sets of attributes?

Example of Finding Keys

Product(name, price, category,
color)

{name, category} > price
{category} = color

What is a key?

Example of Keys

Product(name, price, category,
color)

{name, category} > price
{category} = color

{name, category}* = {name, price, category, color}
= the set of all attributes
= this is a superkey
= this is a key, since neither name nor
category alone is a superkey

Acknowledgement

* Some of the slides in this presentation are taken from the slides
provided by the authors.

* Many of these slides are taken from ¢s145 course offered by
Stanford University.

* Thanks to YouTube, especially to Dr. Daniel Soper for his useful
videos.

