
CSC 261/461 – Database Systems
Lecture 12

Spring 2018 



Announcement

• Project 1 Milestone 2 due tonight! 

• Read the textbook!

– Chapter 8: 

• Will cover later; But self-study the chapter

– Chapter 14: 

• Section 14.1 – 14.5

– Chapter 15:

• Section 15.1 – 15.4



Student Feedback

• http://www.cs.rochester.edu/courses/261/spring2018/ à Forms 
à Feedback Form



Student Feedback #1

• My schedule doesn't fit with any of the times. A Friday afternoon 
would be great. Or Tuesday, Thursday afternoon. Or can I just ask 
my questions and ask what happened at workshops during office 
hours?

• Yes. That’s fine. 

• Workshops are meant to help you better. 
• We know cases where students are too shy to come to office 

hours. In a  group setting they usually perform better. Also, they 
can work as a team solving Problem Set problems. 



Student Feedback #2

• Regarding today's (Feb. 19) announcement, I don't think laptops should 
be banned from class. I use my laptop as my primary means of taking 
notes, since I am much more organized digitally. My laptop is my only 
note-taking tool for all my classes and I find it much more useful than a 
normal notebook. …. . 

• If the reason that laptops are banned is that they distract other students, 
then make a rule that people using laptops sit in the back, while those 
taking notes sit in the front. This gives people the freedom they should 
have in class without hurting other students. …

• If any of you have this same issue, please contact me after the class.  

• Read this post:
• https://www.nytimes.com/2017/11/27/learning/should-teachers-and-

professors-ban-student-use-of-laptops-in-class.html



Agenda

1. 2NF, 3NF and Boyce-Codd Normal Form

2. Decompositions



Functional Dependencies (Graphical Representation)



Prime and Non-prime attributes

• A Prime attribute must be a member of some candidate key

• A Nonprime attribute is not a prime attribute—that is, it is not a 
member of any candidate key. 



Back to Conceptual Design

Now that we know how to find FDs, it’s a straight-forward process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables until 
no more bad FDs

3. When done, the database schema is normalized



Boyce-Codd Normal Form (BCNF)

• Main idea is that we define “good” and “bad” FDs as follows:

– X à A is a “good FD” if X is a (super)key
• In other words, if A is the set of all attributes

– X à A is a “bad FD” otherwise

• We will try to eliminate the “bad” FDs!
– Via normalization



Second Normal Form 

• Uses the concepts of FDs, primary key
• Definitions
– Full functional dependency:
• a FD  Y à Z where removal of any attribute from Y means the FD does not 

hold any more



Second Normal Form (cont.)

• Examples:
– {Ssn, Pnumber} à Hours is a full FD since neither 
• Ssn à Hours nor Pnumber à Hours hold 

– {Ssn, Pnumber} à Ename is not  a full FD (it is called a partial 
dependency ) since Ssn à Ename also holds 



Second Normal Form (2)

• A relation schema R is in second normal form (2NF) if every non-
prime attribute A in R is fully functionally dependent on the 
primary key

• R which is not in 2NF can be decomposed into 2NF relations via the 
process of 2NF normalization or “second normalization”



Normalizing into 2NF



Third Normal Form (1)

• Definition:
– Transitive functional dependency:
• a FD  X à Z that can be derived from two FDs   X à Y and Y à Z 

• Examples:
– Ssn -> Dmgr_ssn is a transitive FD 
• Since Ssn -> Dnumber and Dnumber -> Dmgr_ssn hold 

– Ssn -> Ename is non-transitive
• Since there is no set of attributes X where Ssn à X and X à Ename



Third Normal Form (2)

• A relation schema R is in third normal form (3NF) if it is in 2NF and
no non-prime attribute A in R is transitively dependent on the 
primary key

• R can be decomposed into 3NF relations via the process of 3NF 
normalization 



Normalizing into 3NF



Now, Is it in 3NF?

Employees

lot

name

ssn

Manages Departments

budget

dname

did

since

1 N

CREATE TABLE Employee_Mgr( ssn char(11),
name varchar(30),
lot integer,
since date,
did integer,

PRIMARY KEY (did),
FOREIGN KEY (did) REFERENCES Departments (did) 
ON DELETE RESTRICT,
)

Possible. But…

Our Next topic…
It’s an example 
of  bad 
Functional 
Dependency



Answer: Is it in 2NF?

• Yes. 

• Why?

• Every Non prime attribute is fully functionally dependent on 
primary key {did}



Answer: Is it in 3NF?

• No. 

• Why?

• Non-prime attributes name, lot are transitively dependent on did

• did à ssn à {name,lot}



Remedy

• Take a new relation with {ssn, name, lot}



Remedy (Normalization)

• How to perform 1NF normalization?
– Form new relations for each multivalued attribute

• How to perform 2NF normalization?
– Decompose and set up a new relation for each partial key with it’s 

dependent attributes. 

• How to perform 3NF normalization?
– Decompose and set up a new relation that includes the non-key attribute 

and every-other non-key attributes it determines. 



Normal Forms Defined Informally

• 1st normal form
– All attributes depend on the key

• 2nd normal form
– All attributes depend on the whole key

• 3rd normal form
– All attributes depend on nothing but the key



General Definition of 2NF  and 3NF

• A relation schema R is in second normal form (2NF) if every non-
prime attribute A in R is fully functionally dependent on every key 
of R

• A relation schema R is in third normal form (3NF) if it is in 2NF and
no non-prime attribute A in R is transitively dependent on any key 
of R

(For Multiple Candidate Keys) 



Normalization into 2NF



Normalization into 3NF



1. BOYCE-CODD NORMAL FORM



What you will learn about in this section

1. Conceptual Design

2. Boyce-Codd Normal Form

3. The BCNF Decomposition Algorithm



BCNF (Boyce-Codd Normal Form) 

• A relation schema R is in Boyce-Codd Normal Form (BCNF) if 
whenever an FD X → A holds in R, then X is a superkey of R

• Each normal form is strictly stronger than the previous one
– Every 2NF relation is in 1NF
– Every 3NF relation is in 2NF
– Every BCNF relation is in 3NF



General Definition of 2NF  and 3NF

• A relation schema R is in second normal form (2NF) if every non-
prime attribute A in R is fully functionally dependent on every key 
of R

• A relation schema R is in third normal form (3NF) if it is in 2NF and
no non-prime attribute A in R is transitively dependent on any key 
of R

wait a sec… If A is a prime attribute, it’s 
still in  3NF ?!

Yes! That’s correct



Which Normal form is this?

It is in 3NF, but not in BCNF because C → B

A relation schema R is in third normal form 
(3NF) if it is in 2NF and no non-prime attribute 
A in R is transitively dependent on any key of R



Boyce-Codd normal form



Interpreting the General Definition of Third  Normal Form (2) 

n ALTERNATIVE DEFINITION of 3NF: We can restate the definition as:
A relation schema R is in third normal form (3NF) if, 

whenever a nontrivial FD XàA holds in R, either

a) X is a superkey of R or 

b) A is a prime attribute of R

The condition (b)  takes care of the dependencies 

that “slip through” (are allowable to) 3NF but are 

“caught by” BCNF which we discuss next. 



BCNF (Boyce-Codd Normal Form) 

• Definition of 3NF: 
• A relation schema R is in 3NF if, whenever a nontrivial FD XàA holds in 

R, either
a) X is a superkey of R or 
b) A is a prime attribute of R

• A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever 
an FD X → A holds in R, then 

a) X is a superkey of R
b) There is no b

• Each normal form is strictly stronger than the previous one
– Every 2NF relation is in 1NF
– Every 3NF relation is in 2NF
– Every BCNF relation is in 3NF



Boyce-Codd normal form

Figure 14.13
Boyce-Codd normal form. (a) BCNF normalization of 

LOTS1A with the functional dependency FD2 being lost in 
the decomposition. (b) A schematic relation with FDs; it is 

in 3NF, but not in BCNF due to the f.d. C → B.



A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation 
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key 
for this relation 

• So this relation is in 3NF but not in
BCNF 

• A relation NOT in BCNF should be 
decomposed
• while possibly forgoing the preservation of all 

functional dependencies in the decomposed 
relations.

X à A



Achieving the BCNF by Decomposition

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}ü



Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

In other words: there are no “bad” FDs

A relation R is in BCNF if:

if {X1, ..., Xn} à A is a non-trivial FD in R

then {X1, ..., Xn}  is a superkey for R



Example

What is the key?
{SSN, PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

{SSN} à {Name,City}

⟹	Not in BCNF

This FD is bad 
because it is not a 
superkey



Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Madison

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121

987-65-4321 908-555-1234

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

{SSN} à {Name,City}

Now in BCNF!

This FD is now 
good because it is 
the key



BCNF Decomposition Algorithm

BCNFDecomp(R):
Find X s.t.: X+ ≠ X and X+ ≠ [all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), 
BCNFDecomp(R2)



BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠ 

[all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), 
BCNFDecomp(R2)

Find a set of attributes X 
which has non-trivial 
“bad” FDs, i.e. is not a 
superkey, using closures



BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠ 

[all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), 
BCNFDecomp(R2)

If no “bad” FDs found, in 
BCNF!



BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠ 

[all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), 
BCNFDecomp(R2)

Let Y be the attributes 
that X functionally 
determines (+ that are 
not in X)

And let Z be the other 
attributes that it doesn’t



BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠ 

[all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), 
BCNFDecomp(R2)

X ZY

R1 R2

Split into one relation 
(table) with X plus the 
attributes that X determines 
(Y)…



BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠ 

[all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), 
BCNFDecomp(R2)

X ZY

R1 R2

And one relation with X plus 
the attributes it does not 
determine (Z)



BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠ 

[all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Proceed recursively until no 
more “bad” FDs!



Another way of representing the same concept

BCNFDecomp(R):
If Xà A causes BCNF violation:

Decompose R into

R1= XA
R2 = R –A

(Note: X is present in both R1 and R2)



R(A,B,C,D,E)

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠ 

[all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2) {A} à {B,C}
{C} à {D}

BCNFDecomp(R):
If Xà A causes BCNF violation:

Decompose R into

R1= XA
R2 = R –A

(Note: X is present in both R1 and R2)

Example



Example

R(A,B,C,D,E)
{A}+ = {A,B,C,D} ≠ {A,B,C,D,E}

R1(A,B,C,D)
{C}+ = {C,D} ≠ {A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}



Another Example

• Let the relation schema R(A,B,C,D) is given. For each of the 
following set of FDs do the following:

• i) indicate all the BCNF violations. Do not forget to consider FD’s 
that are not in the given set. However, it is not required to give 
violations that have more than one attribute on the right side.

• ii) Decompose the relations, as necessary, into collections of 
relations that are in BCNF.

• 1. FDs AB→ C, C→D, and D→A



Find Non-trivial dependencies

There are 14 nontrivial dependencies, They 
are: 
C→A, C→D, D→A, AB→D, AB→ C, 
AC→D,BC→A, BC→D, BD→A, BD→C, CD→A, 
ABC→D, ABD→C, and BCD→A.



Proceed From There

• One choice is to decompose using the violation C→D. 
• Using the above FDs, we get ACD (Because of C→D and C→A) and 

BC as decomposed relations. 
• BC is surely in BCNF, since any two-attribute relation is. 
• we discover that ACD is not in BCNF since C is its only key. 
• We must further decompose ACD into AD and CD. 
• Thus, the three relations of the decomposition are BC, AD, and CD.



Two other  topics to Study

• Cover and Minimal Cover

• Let F = {A → C, AC → D, E → AD, E → H}.
• Let G = {A → CD, E → AH}.

• Show that:
• 1. G covers F
• 2. F covers G
• 3. F and G are equivalent



Cover

• We say that a set of functional dependencies F covers another set 
of functional dependencies G, 

– if every functional dependency in G can be inferred from F.

–More formally, F covers G if G+ ⊆ F+

– F is a minimal cover of G if F is the smallest set of functional 
dependencies that cover G





Acknowledgement

• Some of the slides in this presentation are taken from the slides 
provided by the authors. 

• Many of these slides are taken from cs145 course offered by
Stanford University.

• Thanks to YouTube, especially to Dr. Daniel Soper for his useful 
videos.


