
CSC 261/461 – Database Systems
Lecture 13

Spring 2018

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find X s.t.: X+ ≠ X and X+ ≠ [all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1),
BCNFDecomp(R2)

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1),
BCNFDecomp(R2)

Find a set of attributes X
which has non-trivial
“bad” FDs, i.e. is not a
superkey, using closures

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1),
BCNFDecomp(R2)

If no “bad” FDs found, in
BCNF!

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1),
BCNFDecomp(R2)

Let Y be the attributes
that X functionally
determines (+ that are
not in X)

And let Z be the other
attributes that it doesn’t

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1),
BCNFDecomp(R2)

X ZY

R1 R2

Split into one relation
(table) with X plus the
attributes that X determines
(Y)…

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1),
BCNFDecomp(R2)

X ZY

R1 R2

And one relation with X plus
the attributes it does not
determine (Z)

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Proceed recursively until no
more “bad” FDs!

Another way of representing the same concept

BCNFDecomp(R):
If Xà A causes BCNF violation:

Decompose R into

R1= XA
R2 = R –A
(Note: X is present in both R1 and R2)

Continue decomposing until no BCNF violation

R(A,B,C,D,E)

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2) {A} à {B,C}
{C} à {D}

BCNFDecomp(R):
If Xà A causes BCNF violation:
Decompose R into
R1= XA
R2 = R –A
(Note: X is present in both R1 and R2)

Continue decomposing until no BCNF
violation

Example

Example

R(A,B,C,D,E)
{A}+ = {A,B,C,D} ≠ {A,B,C,D,E}

R1(A,B,C,D)
{C}+ = {C,D} ≠ {A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

DECOMPOSITIONS

12

Recap: Decompose to remove redundancies

1. We saw that redundancies in the data (“bad FDs”) can lead to
data anomalies

2. We developed mechanisms to detect and remove redundancies
by decomposing tables into BCNF
1. BCNF decomposition is standard practice- very powerful & widely

used!

3. However, sometimes decompositions can lead to more subtle
unwanted effects…

13

When does this happen?

14

Decompositions in General

R1 = the projection of R on A1, ..., An, B1, ..., Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R2 = the projection of R on A1, ..., An, C1, ..., Cp

15

Theory of Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price
Gizmo 19.99
OneClick 24.99
Gizmo 19.99

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

I.e. it is a Lossless
decomposition

Sometimes a
decomposition is
“correct”

16

Lossy Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

Price Category
19.99 Gadget
24.99 Camera
19.99 Camera

What’s wrong
here?

However
sometimes it isn’t

Lossless Decompositions

A decomposition R to (R1, R2) is lossless if R = R1 Join R2

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lossless Decompositions

18

BCNF decomposition is always lossless. Why?

Note: don’t need
{A1, ..., An} à {C1, ..., Cp}

If {A1, ..., An} à {B1, ..., Bm}
Then the decomposition is lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

A relation TEACH that is in 3NF but not in BCNF

Slide 14- 19

• Two FDs exist in the relation
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key
for this relation

• So this relation is in 3NF but not in
BCNF

• A relation NOT in BCNF should be
decomposed

X à A

Achieving the BCNF by Decomposition (2)

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}

Slide 14- 20

ü

A problem with BCNF

Problem: To enforce a FD, must reconstruct
original relation—on each insert!

22

A Problem with BCNF

{Unit} à {Company}
{Company,Product} à {Unit}

We do a BCNF decomposition
on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product} à {Unit}!!

Unit Company Product
… … …

Unit Company
… …

Unit Product
… …

{Unit} à {Company}

23

So Why is that a Problem?

No problem so far.
All local FD’s are
satisfied.

Unit Company
Galaga99 UW
Bingo UW

Unit Product
Galaga99 Databases
Bingo Databases

Unit Company Product
Galaga99 UW Databases
Bingo UW Databases

Let’s put all the
data back into a
single table again:

{Unit} à {Company}

Violates the FD {Company,Product} à {Unit}!!

24

The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which satisfy
their local FDs but when reconstruct it violates some FD across
tables!

Practical Problem: To enforce FD, must
reconstruct R—on each insert!

25

Possible Solutions

• Various ways to handle so that decompositions are all lossless / no
FDs lost
– For example 3NF- stop short of full BCNF decompositions.

• Usually a tradeoff between redundancy / data anomalies and FD
preservation…

BCNF still most common- with additional steps to
keep track of lost FDs…

Summary

• Constraints allow one to reason about redundancy in the data

• Normal forms describe how to remove this redundancy by
decomposing relations
– Elegant—by representing data appropriately certain errors are essentially

impossible
– For FDs, BCNF is the normal form.

• A tradeoff for insert performance: 3NF

Another Example From Problem Set 5

• Let the relation schema R(A,B,C,D) is given. For each of the
following set of FDs do the following:

• i) indicate all the BCNF violations. Do not forget to consider FD’s
that are not in the given set. However, it is not required to give
violations that have more than one attribute on the right side.

• ii) Decompose the relations, as necessary, into collections of
relations that are in BCNF.

• 1. FDs AB→ C, C→D, and D→A

Find Non-trivial dependencies

There are 14 nontrivial dependencies, They
are:
C→A, C→D, D→A, AB→D, AB→ C,
AC→D,BC→A, BC→D, BD→A, BD→C, CD→A,
ABC→D, ABD→C, and BCD→A.

Proceed From There

• One choice is to decompose using the violation C→D.
• Using the above FDs, we get ACD (Because of C→D and C→A) and

BC as decomposed relations.
• BC is surely in BCNF, since any two-attribute relation is.
• we discover that ACD is not in BCNF since C is its only key.
• We must further decompose ACD into AD and CD.
• Thus, the three relations of the decomposition are BC, AD, and CD.

Two other topics to Study

• Cover and Minimal Cover

• Let F = {A → C, AC → D, E → AD, E → H}.
• Let G = {A → CD, E → AH}.

• Show that:
• 1. G covers F
• 2. F covers G
• 3. F and G are equivalent

Cover

• We say that a set of functional dependencies F covers another set
of functional dependencies G,

– if every functional dependency in G can be inferred from F.
–More formally, F covers G if G+ ⊆ F+

• F is a minimal cover of G if F is the smallest set of functional
dependencies that cover G

Example of Cover

Problem Set 5

• http://www.cs.rochester.edu/courses/261/spring2018/ps/ps5.pdf

• Solution:
• http://www.cs.rochester.edu/courses/261/spring2018/ps/ps5sol.pdf

• Really important for Midterm!

Acknowledgement

• Some of the slides in this presentation are taken from the slides
provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

• Thanks to YouTube, especially to Dr. Daniel Soper for his useful
videos.

