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BCNF Decomposition Algorithm

BCNFDecomp(R):
Find X s.t.: X+ ≠ X and X+ ≠ [all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), 
BCNFDecomp(R2)
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BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠ 

[all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Proceed recursively until no 
more “bad” FDs!



Another way of representing the same concept

BCNFDecomp(R):
If Xà A causes BCNF violation:

Decompose R into

R1= XA
R2 = R –A
(Note: X is present in both R1 and R2)

Continue decomposing until no BCNF violation



R(A,B,C,D,E)

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠ 

[all attributes]

if (not found) then Return R

let Y = X+ - X,  Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2) {A} à {B,C}
{C} à {D}

BCNFDecomp(R):
If Xà A causes BCNF violation:
Decompose R into
R1= XA
R2 = R –A
(Note: X is present in both R1 and R2)

Continue decomposing until no BCNF 
violation

Example



Example

R(A,B,C,D,E)
{A}+ = {A,B,C,D} ≠ {A,B,C,D,E}

R1(A,B,C,D)
{C}+ = {C,D} ≠ {A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}



DECOMPOSITIONS
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Recap: Decompose to remove redundancies

1. We saw that redundancies in the data (“bad FDs”) can lead to 
data anomalies

2. We developed mechanisms to detect and remove redundancies 
by decomposing tables into BCNF
1. BCNF decomposition is standard practice- very powerful & widely 

used!

3. However, sometimes decompositions can lead to more subtle 
unwanted effects…

13

When does this happen?
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Decompositions in General

R1 = the projection of R on A1, ..., An, B1, ..., Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R2 = the projection of R on A1, ..., An, C1, ..., Cp
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Theory of Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price
Gizmo 19.99
OneClick 24.99
Gizmo 19.99

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

I.e. it is a Lossless 
decomposition

Sometimes a 
decomposition is 
“correct”
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Lossy Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

Price Category
19.99 Gadget
24.99 Camera
19.99 Camera

What’s wrong 
here?

However 
sometimes it isn’t



Lossless Decompositions

A decomposition R to (R1, R2) is lossless if R = R1 Join R2

R(A1,...,An,B1,...,Bm,C1,...,Cp) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)



Lossless Decompositions
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BCNF decomposition is always lossless.  Why?

Note: don’t need 
{A1, ..., An} à {C1, ..., Cp}

If {A1, ..., An} à {B1, ..., Bm}
Then the decomposition is lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)



A relation TEACH that is in 3NF but not in BCNF

Slide 14- 19

• Two FDs exist in the relation 
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key 
for this relation 

• So this relation is in 3NF but not in
BCNF 

• A relation NOT in BCNF should be 
decomposed

X à A



Achieving the BCNF by Decomposition (2)

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}

Slide 14- 20

ü



A problem with BCNF

Problem: To enforce a FD, must reconstruct 
original relation—on each insert!
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A Problem with BCNF

{Unit} à {Company}
{Company,Product} à {Unit}

We do a BCNF decomposition 
on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product} à {Unit}!!

Unit Company Product
… … …

Unit Company
… …

Unit Product
… …

{Unit} à {Company}
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So Why is that a Problem?

No problem so far. 
All local FD’s are 
satisfied.

Unit Company
Galaga99 UW
Bingo UW

Unit Product
Galaga99 Databases
Bingo Databases

Unit Company Product
Galaga99 UW Databases
Bingo UW Databases

Let’s put all the 
data back into a 
single table again:

{Unit} à {Company}

Violates the FD {Company,Product} à {Unit}!!
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The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which satisfy 
their local FDs but when reconstruct it violates some FD across 
tables!

Practical Problem: To enforce FD, must 
reconstruct R—on each insert!
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Possible Solutions

• Various ways to handle so that decompositions are all lossless / no 
FDs lost
– For example 3NF- stop short of full BCNF decompositions.  

• Usually a tradeoff between redundancy / data anomalies and FD 
preservation…

BCNF still most common- with additional steps to 
keep track of lost FDs…



Summary

• Constraints allow one to reason about redundancy in the data

• Normal forms describe how to remove this redundancy by 
decomposing relations
– Elegant—by representing data appropriately certain errors are essentially 

impossible
– For FDs, BCNF is the normal form.

• A tradeoff for insert performance: 3NF



Another Example From Problem Set 5

• Let the relation schema R(A,B,C,D) is given. For each of the 
following set of FDs do the following:

• i) indicate all the BCNF violations. Do not forget to consider FD’s 
that are not in the given set. However, it is not required to give 
violations that have more than one attribute on the right side.

• ii) Decompose the relations, as necessary, into collections of 
relations that are in BCNF.

• 1. FDs AB→ C, C→D, and D→A



Find Non-trivial dependencies

There are 14 nontrivial dependencies, They 
are: 
C→A, C→D, D→A, AB→D, AB→ C, 
AC→D,BC→A, BC→D, BD→A, BD→C, CD→A, 
ABC→D, ABD→C, and BCD→A.



Proceed From There

• One choice is to decompose using the violation C→D. 
• Using the above FDs, we get ACD (Because of C→D and C→A) and 

BC as decomposed relations. 
• BC is surely in BCNF, since any two-attribute relation is. 
• we discover that ACD is not in BCNF since C is its only key. 
• We must further decompose ACD into AD and CD. 
• Thus, the three relations of the decomposition are BC, AD, and CD.



Two other  topics to Study

• Cover and Minimal Cover

• Let F = {A → C, AC → D, E → AD, E → H}.
• Let G = {A → CD, E → AH}.

• Show that:
• 1. G covers F
• 2. F covers G
• 3. F and G are equivalent



Cover

• We say that a set of functional dependencies F covers another set 
of functional dependencies G, 

– if every functional dependency in G can be inferred from F.
–More formally, F covers G if G+ ⊆ F+

• F is a minimal cover of G if F is the smallest set of functional 
dependencies that cover G



Example of Cover



Problem Set 5

• http://www.cs.rochester.edu/courses/261/spring2018/ps/ps5.pdf

• Solution:
• http://www.cs.rochester.edu/courses/261/spring2018/ps/ps5sol.pdf

• Really important for Midterm!
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