
CSC 261/461 – Database Systems
Lecture 14

Spring 2018

Announcement

• Midterm on Wednesday!

Announcement

• Start practicing HTML, CSS, JavaScript, PHP + SQL
–We will cover the basics in workshops
– https://www.w3schools.com/php/php_mysql_intro.asp

• Project 1 Milestone 3 will be out soon.
– Combination of Theory and Application
• BCNF decomposition and PHP and MySQL

• Project 2 Part 2 will be out soon, too.

Announcement

Workshops from now onwards are going
to be very important for doing well in your

projects and save you plenty of time

We will cover:
1. Triggers
2. HTML, CSS, Java Script
3. PHP and MySQL together
4. MongoDb
5. Spark (if time permits)

Agenda

• Relational Algebra (Today)
– Please read Chapter 8

• Relational Calculus (We will not cover)

• Also, Midterm Review

RELATIONAL ALGEBRA

Motivation

Relational Algebra provides a formal
foundation for relational model operations

It is the basis for implementing and
optimizing queries in any RDBMS

The core operations of most relational
systems are based on Relational Algebra

The Relational Model: Schemata

• Relational Schema:

Students(sid: string, name: string, gpa: float)

AttributesString, float, int, etc.
are the domains of
the attributes

Relation
name

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An attribute (or
column) is a
typed data entry
present in each
tuple in the
relation

The number of
attributes is the arity
of the relation

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A tuple or row (or record) is a
single entry in the table having the
attributes specified by the schema

The number
of tuples is
the
cardinality of
the relation

The Relational Model: Data

Student

A relational instance is a set of
tuples all conforming to the same

schema

Recall: In practice
DBMSs relax the
set requirement,
and use multisets.

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Relation Instances

• Relation DB Schema
– Students(sid: string, name: string, gpa: float)
– Courses(cid: string, cname: string, credits: int)
– Enrolled(sid: string, cid: string, grade: string)

Sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Relation
Instances

Note that the schemas
impose effective domain /
type constraints, i.e. Gpa
can’t be “Apple”

Querying

“Find names of all students
with GPA > 3.5”

We don’t tell the system how or
where to get the data- just what
we want, i.e., Querying is
declarative

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

To make this happen, we need to
translate the declarative query
into a series of operators… we’ll
see this next!

Relational Algebra

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan Execution

Declarative
query (from
user)

Translate to
relational algebra
expresson

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan Execution

Relational Algebra allows us to translate declarative (SQL)
queries into precise and optimizable expressions!

• Five basic operators:

1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:

– Intersection
– Joins (natural, equi-join, theta join, semi-join)
– Renaming: r
– Division

We’ll look at these first!

And also at one example of
a derived operator (natural
join) and a special operator
(renaming)

Relational Algebra (RA)

Keep in mind: RA operates on sets!

• RDBMSs use multisets, however in relational algebra formalism we
will consider sets!

• Also: we will consider the named perspective, where every
attribute must have a unique name
–àattribute order does not matter…

Now on to the basic RA operators…

• Returns all tuples which
satisfy a condition

• Notation: sc(R)
• Examples
– sSalary > 40000 (Employee)
– sname = “Smith” (Employee)

• The condition c can be =, <,
£, >, ³, <>

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
!"#$	&'.)(+,-./0,1)

Students(sid,sname,gpa)

1. Selection (!)

sSalary > 40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another example:

• Eliminates columns, then
removes duplicates

• Notation: P A1,…,An(R)
• Example: project social-

security number and names:
– P SSN, Name (Employee)
– Output schema: Answer(SSN,

Name)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Π"#$%&,()$(+,-./0,1)

Students(sid,sname,gpa)

2. Projection (Π)

P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another example:

Note that RA Operators are Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent
this query in RA?

Π"#$%&,()$(+()$,-./(01234516))

+()$,-./(Π"#$%&,()$(01234516))

Are these logically
equivalent?

• Each tuple in R1 with each
tuple in R2

• Notation: R1 ´ R2
• Example:
– Employee ´ Dependents

• Rare in practice; mainly used
to express joins

SELECT *
FROM Students, People;

SQL:

RA:
!"#$%&"'	×	*%+,-%

Students(sid,sname,gpa)
People(ssn,pname,address)

3. Cross-Product (×)

ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

!"#$%&"'	×	*%+,-%

×

ssn pname address sid sname gpa

1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother example:

• Changes the schema, not the
instance

• A ‘special’ operator- neither basic
nor derived

• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the
proper form (since names, not
order matters!):
– r A1àB1,…,AnàBn (R)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
!"#$%&%,()*+,,-)%+.#/0,(23456738)

Students(sid,sname,gpa)

We care about this operator because we
are working in a named perspective

Renaming (!)

sid sname gpa

001 John 3.4

002 Bob 1.3

!"#$%&%,()*+,,-)%+.#/0,(23456738)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another example:

• Notation: R1 ⋈	R2

• Joins R1 and R2 on equality of all shared
attributes
– If R1 has attribute set A, and R2 has attribute set B,

and they share attributes A⋂B = C, can also be
written: R1 ⋈ $	R2

• Our first example of a derived RA operator:
– Meaning: R1 ⋈ R2 = PA U B(sC=D(%&→((R1) ´ R2))
– Where:

• The rename %&→(renames the shared attributes in
one of the relations

• The selection sC=D checks equality of the shared
attributes

• The projection PA U B eliminates the duplicate common
attributes

SELECT DISTINCT
sid, S.name, gpa,
ssn, address

FROM
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
*+,-./+0	 ⋈ 	1.234.

Students(sid,name,gpa)
People(ssn,name,address)

Natural Join (⋈)
Note: Textbook notation is *

R1 ⋈ R2 = PA U B(sC=D(%&→((R1) ´ R2))

ssn P.name address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa

001 John 3.4

002 Bob 1.3

!"#$%&"'	 ⋈ *%+,-%

⋈

sid S.name gpa ssn address

001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People PStudents S
Another example:

Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema
of R ⋈	S ?

• Given R(A, B, C), S(D, E), what is R ⋈	S ?

• Given R(A, B), S(A, B), what is R ⋈	S ?

Example: Converting SFW Query -> RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
S.name = P.name;

How do we represent
this query in RA?

Π"#$,$&&'())(+"#$,-./(0 ⋈ 2))

Students(sid,name,gpa)
People(ssn,name,address)

Logical Equivalece of RA Plans

• Given relations R(A,B) and S(B,C):

– Here, projection & selection commute:
• !"#$(Π"(')) = Π"(!"#$('))

–What about here?
• !"#$(Π*('))	?= Π*(!"#$('))

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan Execution

We saw how we can transform declarative SQL queries
into precise, compositional RA plans

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan Execution

We’ll look at how to then optimize these
plans later in this lecture

RDBMS Architecture

How is the RA “plan” executed?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan Execution

We already know how to execute all the basic operators!

2. ADV. RELATIONAL ALGEBRA

What you will learn about in this section

1. Set Operations in RA

2. Fancier RA

• Five basic operators:

1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:

– Intersection

– Joins (natural,equi-join, theta join, semi-join)

– Renaming: r
– Division

Relational Algebra (RA)

We’ll look at these

And also at some of
these derived
operators

1. Union (È) and 2. Difference (–)

• R1 È R2
• Example:
– ActiveEmployees È RetiredEmployees

• R1 – R2
• Example:
– AllEmployees -- RetiredEmployees

R1 R2

R1 R2

What about Intersection (Ç) ?

• It is a derived operator
• R1 Ç R2 = R1 – (R1 – R2)
• Also expressed as a join!
• Example
– UnionizedEmployees Ç RetiredEmployees

R1 R2

Fancier RA

Theta Join (⋈q)

• A join that involves a predicate
• R1 ⋈q R2 = s q (R1 ´ R2)
• Here q can be any condition

SELECT *
FROM

Students,People
WHERE q;

SQL:

RA:
"#$%&'#(⋈* 	+&,-.&

Students(sid,sname,gpa)
People(ssn,pname,address)

Note that natural join is a
theta join + a projection.

Equi-join (⋈	A=B)

• A theta join where q is an equality
• R1 ⋈	A=B R2 = s A=B (R1 ´ R2)
• Example:
– Employee ⋈	SSN=SSN Dependents SELECT *

FROM
Students S,
People P

WHERE sname = pname;

SQL:

RA:
#	 ⋈$%&'()*%&'(+

Students(sid,sname,gpa)
People(ssn,pname,address)

Most common join
in practice!

Semijoin (⋉)

• R ⋉ S = P A1,…,An (R ⋈ S)
• Where A1, …, An are the attributes in R
• Example:
– Employee ⋉	Dependents SELECT DISTINCT

sid,sname,gpa
FROM
Students,People

WHERE
sname = pname;

SQL:

RA:

$%&'()%* ⋉ +(,-.(

Students(sid,sname,gpa)
People(ssn,pname,address)

Divison (÷)

– T(Y) = R(Y,X) ÷ S(X)

– Y is the set of attributes of R that are not attributes of S.

– For a tuple t to appear in the result T of the Division, the values in t
must appear in R in combination with every tuple in S.

Example

https://www.simple-talk.com/sql/t-sql-programming/divided-we-stand-the-sql-of-relational-division/

R(Y,X) T(Y)S(X)÷ =

SELECT PS1.pilot_name
FROM PilotSkills AS PS1, Hangar AS H1
WHERE PS1.plane_name = H1.plane_name
GROUP BY PS1.pilot_name
HAVING COUNT(PS1.plane_name) =

(SELECT COUNT(plane_name) FROM Hangar);

Multisets

Recall that SQL uses Multisets

Tuple

(1, a)

(1, a)

(1, b)

(2, c)

(2, c)

(2, c)

(1, d)

(1, d)

Tuple !(#)

(1, a) 2

(1, b) 1

(2, c) 3

(1, d) 2Equivalent
Representations

of a Multiset

Multiset X

Multiset X

Note: In a set all
counts are {0,1}.

! # = “Count of tuple in
X”
(Items not listed have
implicit count 0)

Generalizing Set Operations to Multiset Operations

Tuple !(#)

(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X
Tuple !(%)

(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y
Tuple !(&)

(1, a) 2

(1, b) 0

(2, c) 2

(1, d) 0

Multiset Z

∩ =

! & =)*+(! # , ! %)
For sets, this is
intersection

Tuple !(#)

(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X
Tuple !(%)

(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y
Tuple !(&)

(1, a) 7

(1, b) 1

(2, c) 5

(1, d) 2

Multiset Z

∪ =

! & = ! # + 	! %
For sets,

this is union

Generalizing Set Operations to Multiset
Operations

Operations on Multisets

– sC(R): preserve the number of occurrences

– PA(R): no duplicate elimination

– Cross-product, join: no duplicate elimination

This is important-
relational engines work on multisets, not sets!

Complete Set of Relational Operations

• The set of operations including
• Select s,
• Project p
• Union È
• Difference �
• Rename r, and
• Cartesian Product X

– is called a complete set
– because any other relational algebra expression can be expressed by a

combination of these five operations.
• For example:
– R Ç S = (R È S) – ((R - S) È (S - R))
– R⋈<join condition>S = s <join condition> (R X S)

Table 8.1 Operations of Relational Algebra

continued on next slide

Table 8.1 Operations of Relational Algebra
(continued)

Query Tree Notation

• Query Tree
– An internal data structure to represent a query
– Standard technique for estimating the work involved in executing the

query, the generation of intermediate results, and the optimization of
execution

– Nodes stand for operations like selection, projection, join, renaming,
division, ….

– Leaf nodes represent base relations
– A tree gives a good visual feel of the complexity of the query and the

operations involved
– Algebraic Query Optimization consists of rewriting the query or

modifying the query tree into an equivalent tree.

Example of Query Tree

• For every project located in Stafford, list the project number, dept.
number, manager’s last name, address, and birth date

• (page 258)

Summary

• Total 8 basic operators:
– Unary relational operators (3)
• Selection: s
• Projection: P
• Renaming: r

– Binary relational operators (5)
• Union: ∪
• Intersect: ∩
• Set difference: -

• Cartesian Product (Join): ´ , ⋈
– Natural Join, Theta Join, Equi-Join, Semi-Join.

• Division: ÷
• Tell us: How the query may be executed.

Acknowledgement

• Some of the slides in this presentation are taken from the slides
provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

MIDTERM REVIEW

Chapters to Read

• Chapter 1
• Chapter 2
• Chapter 3
• Chapter 4 (Just the basics. Only ISA relationships. Even studying the slides is fine)

• Chapter 5, 6, 7 (SQL)
• Chapter 9
• Chapter 14 (14.1-14.5)

• Chapter 15 (15.1-15.3)

Exam Structure

• Problem 1 (20 pts)
– Short answers, True/False, or One liner

• Other problems (55 pts)

• Plenty of SQL queries, ER diagram, BCNF decomposition questions.

• Total: 75 pts

Time distribution

• Time crunch.
– Not as relaxed as the quiz

Notes:
I may curve the grades.

For example, If I decide 70 pts is equivalent to 100% score credit, I
will scale all scores accordingly. If you have have scored more than
70, for example, 75, those 5 points will be treated as extra-credit for
future.

MATERIALS COVERED

Questions to ponder

• Why not Lists? Why database?

• How related tables avoid problems associated with lists?

Problems with Lists

• Multiple Concepts or Themes:
–Microsoft Excel vs Microsoft Access

• Redundancy
• Anomalies:
– Deletion anomalies
– Update anomalies
– Insertion anomalies

List vs Database

• Lists do not provide information about relations!

• Break lists into tables

• Facilitates:
– Insert
– Delete
– Update

• Input and Output interface (Forms and Reports)

• Query!

Again, Why database?

• To store data
• To provide structure
• Mechanism for querying, creating, modifying and deleting data.
• CRED (Create, Read, Update, Delete)
• Store information and relationships

• Database Schema vs. Database State

Simplified Database System Environment

SQL

General form SQL

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation steps:
1. Evaluate FROM-WHERE: apply condition

C1 on the attributes in R1,…,Rn

2. GROUP BY the attributes a1,…,ak
3. Apply condition C2 to each group (may

have aggregates)
4. Compute aggregates in S and return the

result

Grouping and Aggregation

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and aggregates

Semantics of the query:

1. Compute the FROM and WHERE clauses

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

FROM

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10
Banana 10/10 1 10

2. Group by the attributes in the GROUP BY

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

3. Compute the SELECT clause: grouped attributes
and aggregates

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

HAVING Clause

Same query as
before, except
that we consider
only products that
have more than
100 buyers

HAVING clauses contains conditions on aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas WHERE clauses condition on individual tuples…

Null Values

Unexpected behavior:

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Some Persons are not included !

Null Values

Can test for NULL explicitly:
– x IS NULL
– x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

OR age IS NULL

Now it includes all Persons!

Inner Joins

By default, joins in SQL are “inner joins”:

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Both equivalent:
Both INNER JOINS!

Inner Joins + NULLS = Lost data?

By default, joins in SQL are “inner joins”:

However: Products that never sold (with no Purchase tuple) will be lost!

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase
INNER JOIN:

SELECT Product.name, Purchase.store
FROM Product

INNER JOIN Purchase
ON Product.name = Purchase.prodName

Note: another equivalent way to write an
INNER JOIN!

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase
LEFT OUTER JOIN:

SELECT Product.name, Purchase.store
FROM Product

LEFT OUTER JOIN Purchase
ON Product.name = Purchase.prodName

Other Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no match

Also read

• Triggers
• Views
• Operations on Databases
– Create, Drop, and Alter

• Operations of Tables
– Insert, Delete and Update

• Constraint:
– Key constraint
– Foreign key
– On Delete cascade, Set Null, Set Default;

DATABASE DESIGN

Database Design Process

1. Requirements analysis
– What is going to be stored?

– How is it going to be used?

– What are we going to do with the data?

– Who should access the data?

Technical and non-
technical people are
involved

1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security,
etc.

Database Design Process

2. Conceptual Design

– A high-level description of the database

– Sufficiently precise that technical people can understand
it

– But, not so precise that non-technical people can’t
participate

This is where E/R fits in.

1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, etc.

Database Design Process

1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, etc.

3. Implementation:

• Logical Database Design

• Physical Database Design

• Security Design

This process is
iterated many

times

E/R is a visual syntax for DB design which is precise enough for
technical points, but abstracted enough for non-technical

people

Database Design Process
1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, etc.

MakesProduct

name category

price

Company

name

E/R Model & Diagrams used

Requirements Become the E-R Data Model

• After the requirements have been gathered, they
are transformed into an Entity Relationship (E-R)
Data Model

• E-R Models consist of
1. Entities
2. Attributes

a) Identifiers (Keys)
b) Non-key attributes

3. Relationships

1. E/R BASICS: ENTITIES & RELATIONS

Entities and Entity Sets

• An entity set has
attributes
– Represented by ovals

attached to an entity set

Product

name category

price

Shapes are
important. Colors are
not.

Keys

• A key is a minimal set of attributes that
uniquely identifies an entity.

Product

name category

price

Denote elements of the
primary key by
underlining.

Here, {name, category} is not a key
(it is not minimal).

The E/R model forces us to designate a single primary key, though there
may be multiple candidate keys

Relationships

• A relationship connects two or more entity sets.
• It is represented by a diamond, with lines to each of the entity sets

involved.
• The degree of the relationship defines the number of entity classes

that participate in the relationship
– Degree 1 is a unary relationship
– Degree 2 is a binary relationship
– Degree 3 is a ternary relationship

Conceptual Unary Relationship

Person Marries

Conceptual Binary Relationship

Person CarsOwns

Conceptual Ternary Relationship

Patient DrugPrescription

Doctor

The R in E/R: Relationships

• E, R and A together:

Product

name category

price
Company

name

Makes

What is a Relationship?

MakesProduct

name category

price

Company

name

A relationship between entity sets P and C is a
subset of all possible pairs of entities in P and C,
with tuples uniquely identified by P and C’s keys

What is a Relationship?

name category price
Gizmo Electronics $9.99
GizmoLite Electronics $7.50
Gadget Toys $5.50

name
GizmoWorks
GadgetCorp

ProductCompany
C.name P.name P.category P.price
GizmoWorks Gizmo Electronics $9.99
GizmoWorks GizmoLite Electronics $7.50
GizmoWorks Gadget Toys $5.50
GadgetCorp Gizmo Electronics $9.99
GadgetCorp GizmoLite Electronics $7.50
GadgetCorp Gadget Toys $5.50

Company C ×		Product P

MakesProduct

name category
price

Company

name

A relationship between entity sets P and C is a
subset of all possible pairs of entities in P and C,
with tuples uniquely identified by P and C’s keys

What is a Relationship?

name category price
Gizmo Electronics $9.99
GizmoLite Electronics $7.50
Gadget Toys $5.50

name
GizmoWorks
GadgetCorp

ProductCompany
C.name P.name P.category P.price
GizmoWorks Gizmo Electronics $9.99
GizmoWorks GizmoLite Electronics $7.50
GizmoWorks Gadget Toys $5.50
GadgetCorp Gizmo Electronics $9.99
GadgetCorp GizmoLite Electronics $7.50
GadgetCorp Gadget Toys $5.50

Company C 	×		Product P

C.name P.name
GizmoWorks Gizmo
GizmoWorks GizmoLite
GadgetCorp Gadget

Makes
MakesProduct

name category
price

Company

name

A relationship between entity sets P and C is a
subset of all possible pairs of entities in P and C,
with tuples uniquely identified by P and C’s keys

Product

name category

price
Company

name

Makes

since

• Relationships may have attributes as well.

For example: “since”
records when company
started making a
product

Note: “since” is
implicitly unique
per pair here!
Why?

Relationships and Attributes

Summary

• Summary

Identifying Relationship

Design Theory (ER model to Relations)

Entity Sets to Tables

Employees

lot

name

ssn

ssn name lot

123-22-3333 Alex 23

234-44-6666 Bob 44

567-88-9787 John 12

CREATE TABLE Employees (ssn char(11),
name varchar(30),
lot Integer,
PRIMARY KEY (ssn))

Other Conversions (ER model to Tables)

• Relationships:
• Many to Many
• One to Many
• One to One

Scenario

• One customer can have at max 2 loans. One loan can be
given to multiple customers.

What it really means:
– One customer can have (0,2) loans
– One loan can be given to (1,n) customer
– This is a many to many scenario

Crow’s foot Notation

Chen Notation

FUNCTIONAL DEPENDENCIES

Prime and Non-prime attributes

• A Prime attribute must be a member of some candidate key

• A Nonprime attribute is not a prime attribute—that is, it is not a
member of any candidate key.

Back to Conceptual Design

Now that we know how to find FDs, it’s a straight-forward process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables until
no more bad FDs

3. When done, the database schema is normalized

Boyce-Codd Normal Form (BCNF)

• Main idea is that we define “good” and “bad” FDs as follows:

– X à A is a “good FD” if X is a (super)key
• In other words, if A is the set of all attributes

– X à A is a “bad FD” otherwise

• We will try to eliminate the “bad” FDs!
– Via normalization

Normalizing into 2NF and 3NF

Figure 14.12 Normalization into 2NF and 3NF

Figure 14.12
Normalization into 2NF
and 3NF. (a) The LOTS
relation with its
functional dependencies
FD1 through FD4.
(b) Decomposing into
the 2NF relations LOTS1
and LOTS2. (c)
Decomposing LOTS1
into the 3NF relations
LOTS1A and LOTS1B.
(d) Progressive
normalization of LOTS
into a 3NF design.

Normal Forms Defined Informally

• 1st normal form
– All attributes depend on the key

• 2nd normal form
– All attributes depend on the whole key

• 3rd normal form
– All attributes depend on nothing but the key

General Definition of 2NF and 3NF (For Multiple Candidate Keys)

• A relation schema R is in second normal form (2NF) if every non-
prime attribute A in R is fully functionally dependent on every key
of R

• A relation schema R is in third normal form (3NF) if it is in 2NF and
no non-prime attribute A in R is transitively dependent on any key
of R

1. BOYCE-CODD NORMAL FORM

Figure 14.14 A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation
TEACH:
– fd1: { student, course} -> instructor
– fd2: instructor -> course

• {student, course} is a candidate key
for this relation

• So this relation is in 3NF but not in
BCNF

• A relation NOT in BCNF should be
decomposed so as to meet this
property,
– while possibly forgoing the preservation

of all functional dependencies in the
decomposed relations.

Achieving the BCNF by Decomposition (2)

n Three possible decompositions for relation TEACH
nD1: {student, instructor} and {student, course}
nD2: {course, instructor } and {course, student}
nD3: {instructor, course } and {instructor, student} ü

4.3 Interpreting the General Definition of Third Normal Form (2)

n ALTERNATIVE DEFINITION of 3NF: We can restate the definition as:
A relation schema R is in third normal form (3NF) if,

whenever a nontrivial FD XàA holds in R, either

a) X is a superkey of R or

b) A is a prime attribute of R

The condition (b) takes care of the dependencies that “slip

through” (are allowable to) 3NF but are “caught by” BCNF

which we discuss next.

1. BOYCE-CODD NORMAL FORM

What you will learn about in this section

1. Boyce-Codd Normal Form

2. The BCNF Decomposition Algorithm

5. BCNF (Boyce-Codd Normal Form)

• Definition of 3NF:
• A relation schema R is in 3NF if, whenever a nontrivial FD XàA holds in

R, either
a) X is a superkey of R or
b) A is a prime attribute of R

• A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever
an FD X → A holds in R, then

a) X is a superkey of R
b) There is no b

• Each normal form is strictly stronger than the previous one
– Every 2NF relation is in 1NF
– Every 3NF relation is in 2NF
– Every BCNF relation is in 3NF

Boyce-Codd normal form

Figure 14.13
Boyce-Codd normal form. (a) BCNF normalization of

LOTS1A with the functional dependency FD2 being lost in
the decomposition. (b) A schematic relation with FDs; it is

in 3NF, but not in BCNF due to the f.d. C → B.

A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key
for this relation

• So this relation is in 3NF but not in
BCNF

• A relation NOT in BCNF should be
decomposed

X à A

Achieving the BCNF by Decomposition

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}ü

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

In other words: there are no “bad” FDs

A relation R is in BCNF if:

if {X1, ..., Xn} à A is a non-trivial FD in R

then {X1, ..., Xn} is a superkey for R

Example

What is the key?
{SSN, PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

{SSN} à {Name,City}

⟹	Not in BCNF

This FD is bad
because it is not a
superkey

Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Madison

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121

987-65-4321 908-555-1234

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

{SSN} à {Name,City}

Now in BCNF!

This FD is now
good because it is
the key

BCNF Decomposition

BCNFDecomp(R):

If Xà A causes BCNF violation:
Decompose R into
R1= XA
R2 = R –A
(Note: X is present in both R1 and R2)

Return BCNFDecomp(R1), BCNFDecomp(R2)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

Example

BCNFDecomp(R):

If Xà A causes BCNF violation:
Decompose R into
R1= XA
R2 = R –A
(Note: X is present in both R1 and
R2)

Return BCNFDecomp(R1),
BCNFDecomp(R2)

Example

R(A,B,C,D,E)
{A}+ = {A,B,C,D} ≠ {A,B,C,D,E}

R1(A,B,C,D)
{C}+ = {C,D} ≠ {A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

2. DECOMPOSITIONS

Recap: Decompose to remove redundancies

1. We saw that redundancies in the data (“bad FDs”) can lead to
data anomalies

2. We developed mechanisms to detect and remove redundancies
by decomposing tables into BCNF
1. BCNF decomposition is standard practice- very powerful & widely

used!

3. However, sometimes decompositions can lead to more subtle
unwanted effects…

When does this happen?

Decompositions in General

R1 = the projection of R on A1, ..., An, B1, ..., Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp
)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R2 = the projection of R on A1, ..., An, C1, ..., Cp

Theory of Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price
Gizmo 19.99
OneClick 24.99
Gizmo 19.99

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

I.e. it is a Lossless
decomposition

Sometimes a
decomposition is
“correct”

Lossy Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

Price Category
19.99 Gadget
24.99 Camera
19.99 Camera

What’s wrong
here?

However
sometimes it isn’t

Lossless Decompositions

A decomposition R to (R1, R2) is lossless if R = R1 Join R2

R(A1,...,An,B1,...,Bm,C1,...,Cp
)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lossless Decompositions

BCNF decomposition is always lossless. Why?

Note: don’t need
{A1, ..., An} à {C1, ..., Cp}

If {A1, ..., An} à {B1, ..., Bm}
Then the decomposition is lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp
)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key
for this relation

• So this relation is in 3NF but not in
BCNF

• A relation NOT in BCNF should be
decomposed

X à A

Achieving the BCNF by Decomposition (2)

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}ü

A problem with BCNF

Problem: To enforce a FD, must reconstruct
original relation—on each insert!

A Problem with BCNF

{Unit} à {Company}
{Company,Product} à {Unit}

We do a BCNF decomposition
on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product} à {Unit}!!

Unit Company Product
… … …

Unit Company
… …

Unit Product
… …

{Unit} à {Company}

So Why is that a Problem?

No problem so far.
All local FD’s are
satisfied.

Unit Company
Galaga99 UW
Bingo UW

Unit Product
Galaga99 Databases
Bingo Databases

Unit Company Product
Galaga99 UW Databases
Bingo UW Databases

Let’s put all the
data back into a
single table again:

{Unit} à {Company}

Violates the FD {Company,Product} à {Unit}!!

The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which satisfy
their local FDs but when reconstruct it violates some FD across
tables!

Practical Problem: To enforce FD, must
reconstruct R—on each insert!

Possible Solutions

• Various ways to handle so that decompositions are all lossless / no
FDs lost
– For example 3NF- stop short of full BCNF decompositions.

• Usually a tradeoff between redundancy / data anomalies and FD
preservation…

BCNF still most common- with additional steps to
keep track of lost FDs…

Other Topics

• Problem Set 5 (Really important)

– Cover
–Minimal Cover
– BCNF violations and Decomposition

