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Announcement

• Midterm on Wednesday!





Announcement

• Start practicing HTML, CSS, JavaScript, PHP + SQL 
–We will cover the basics in workshops
– https://www.w3schools.com/php/php_mysql_intro.asp

• Project 1 Milestone 3 will be out soon. 
– Combination of Theory and Application
• BCNF decomposition and PHP and MySQL

• Project 2 Part 2 will be out soon, too.



Announcement

Workshops from now onwards are going 
to be very important for doing well in your 

projects and save you plenty of time

We will cover:
1. Triggers
2. HTML, CSS, Java Script
3. PHP and MySQL together
4. MongoDb
5. Spark (if time permits)



Agenda

• Relational Algebra (Today)
– Please read Chapter 8

• Relational Calculus (We will not cover)

• Also, Midterm Review



RELATIONAL ALGEBRA



Motivation

Relational Algebra provides a formal 
foundation for relational model operations

It is the basis for implementing and 
optimizing queries in any RDBMS

The core operations of most relational 
systems are based on Relational Algebra



The Relational Model: Schemata

• Relational Schema:

Students(sid: string, name: string, gpa: float)

AttributesString, float, int, etc. 
are the domains of 
the attributes

Relation 
name



The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An attribute (or 
column) is a 
typed data entry 
present in each 
tuple in the 
relation

The number of 
attributes is the arity
of the relation



The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A tuple or row (or record) is a 
single entry in the table having the 
attributes specified by the schema

The number 
of tuples is 
the 
cardinality of 
the relation



The Relational Model: Data

Student

A relational instance is a set of 
tuples all conforming to the same 

schema

Recall: In practice 
DBMSs relax the 
set requirement, 
and use multisets.  

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5



Relation Instances

• Relation DB Schema
– Students(sid: string, name: string, gpa: float)
– Courses(cid: string, cname: string, credits: int)
– Enrolled(sid: string, cid: string, grade: string)

Sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Relation 
Instances

Note that the schemas 
impose effective domain / 
type constraints, i.e. Gpa
can’t be “Apple”



Querying

“Find names of all students 
with GPA > 3.5”

We don’t tell the system how or 
where to get the data- just what 
we want, i.e., Querying is 
declarative

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

To make this happen, we need to 
translate the declarative query 
into a series of operators… we’ll 
see this next!



Relational Algebra



RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan Execution

Declarative 
query (from 
user)

Translate to 
relational algebra 
expresson

Find logically 
equivalent- but 
more efficient- RA 
expression

Execute each 
operator of the 
optimized plan!



RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan Execution

Relational Algebra allows us to translate declarative (SQL) 
queries into precise and optimizable expressions!



• Five basic operators:

1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:

– Intersection
– Joins (natural, equi-join, theta join, semi-join)
– Renaming: r
– Division

We’ll look at these first!

And also at one example of 
a derived operator (natural 
join) and a special operator 
(renaming)

Relational Algebra (RA)



Keep in mind: RA operates on sets!

• RDBMSs use multisets, however in relational algebra formalism we 
will consider sets!

• Also: we will consider the named perspective, where every 
attribute must have a unique name
–àattribute order does not matter…

Now on to the basic RA operators…



• Returns all tuples which 
satisfy a condition

• Notation: sc(R)
• Examples
– sSalary > 40000 (Employee)
– sname = “Smith” (Employee)

• The condition c can be =, <, 
£, >, ³, <>

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
!"#$	&'.)(+,-./0,1)

Students(sid,sname,gpa)

1. Selection (!)



sSalary > 40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another example:



• Eliminates columns, then 
removes duplicates

• Notation:   P A1,…,An(R)
• Example: project social-

security number and names:
– P SSN, Name (Employee)
– Output schema:   Answer(SSN, 

Name)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Π"#$%&,()$(+,-./0,1)

Students(sid,sname,gpa)

2. Projection (Π)



P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another example:



Note that RA Operators are Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent 
this query in RA?

Π"#$%&,()$(+()$,-./(01234516))

+()$,-./(Π"#$%&,()$(	01234516))

Are these logically 
equivalent?



• Each tuple in R1 with each 
tuple in R2

• Notation: R1 ´ R2
• Example:  
– Employee ´ Dependents

• Rare in practice; mainly used 
to express joins

SELECT *
FROM Students, People;

SQL:

RA:
!"#$%&"'	×	*%+,-%

Students(sid,sname,gpa)
People(ssn,pname,address)

3. Cross-Product (×)



ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

!"#$%&"'	×	*%+,-%

×

ssn pname address sid sname gpa

1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother example:



• Changes the schema, not the 
instance

• A ‘special’ operator- neither basic 
nor derived

• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the 
proper form (since names, not 
order matters!):
– r A1àB1,…,AnàBn (R)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
!"#$%&%,()*+,,-)%+.#/0,(23456738)

Students(sid,sname,gpa)

We care about this operator because we 
are working in a named perspective

Renaming (!)



sid sname gpa

001 John 3.4

002 Bob 1.3

!"#$%&%,()*+,,-)%+.#/0,(23456738)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another example:



• Notation: R1 ⋈	R2

• Joins R1 and R2 on equality of all shared 
attributes
– If R1 has attribute set A, and R2 has attribute set B, 

and they share attributes A⋂B = C, can also be 
written: R1 ⋈ $	R2

• Our first example of a derived RA operator:
– Meaning:  R1 ⋈ R2 = PA U B(sC=D(%&→((R1) ´ R2))
– Where:

• The rename %&→( renames the shared attributes in 
one of the relations

• The selection sC=D checks equality of the shared 
attributes

• The projection PA U B eliminates the duplicate common 
attributes

SELECT DISTINCT
sid, S.name, gpa,
ssn, address

FROM 
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
*+,-./+0	 ⋈ 	1.234.

Students(sid,name,gpa)
People(ssn,name,address)

Natural Join (⋈	) 
Note: Textbook notation is *

R1 ⋈ R2 = PA U B(sC=D(%&→((R1) ´ R2))



ssn P.name address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa

001 John 3.4

002 Bob 1.3

!"#$%&"'	 ⋈ *%+,-%

⋈

sid S.name gpa ssn address

001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People PStudents S
Another example:



Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema 
of R ⋈	S ?

• Given R(A, B, C),  S(D, E), what is R ⋈	S  ?

• Given R(A, B),  S(A, B),  what is  R ⋈	S  ?



Example: Converting SFW Query -> RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
S.name = P.name;

How do we represent 
this query in RA?

Π"#$,$&&'())(+"#$,-./(0 ⋈ 2))

Students(sid,name,gpa)
People(ssn,name,address)



Logical Equivalece of RA Plans

• Given relations R(A,B) and S(B,C):

– Here, projection & selection commute: 
• !"#$(Π"(')) = Π"(!"#$('))

–What about here?
• !"#$(Π*('))	?= Π*(!"#$('))



RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan Execution

We saw how we can transform declarative SQL queries 
into precise, compositional RA plans



RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan Execution

We’ll look at how to then optimize these 
plans later in this lecture



RDBMS Architecture

How is the RA “plan” executed?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan Execution

We already know how to execute all the basic operators!



2. ADV. RELATIONAL ALGEBRA



What you will learn about in this section

1. Set Operations in RA

2. Fancier RA



• Five basic operators:

1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:

– Intersection

– Joins (natural,equi-join, theta join, semi-join)

– Renaming: r
– Division

Relational Algebra (RA)

We’ll look at these

And also at some of 
these derived 
operators



1. Union (È) and 2. Difference (–)

• R1 È R2
• Example:  
– ActiveEmployees È RetiredEmployees

• R1 – R2
• Example:
– AllEmployees -- RetiredEmployees

R1 R2

R1 R2



What about Intersection (Ç) ?

• It is a derived operator
• R1 Ç R2 = R1 – (R1 – R2)
• Also expressed as a join!
• Example
– UnionizedEmployees Ç RetiredEmployees

R1 R2



Fancier RA



Theta Join (⋈q)

• A join that involves a predicate
• R1 ⋈q R2   =  s q (R1 ´ R2)
• Here q can be any condition 

SELECT *
FROM 

Students,People
WHERE q;

SQL:

RA:
"#$%&'#(	 ⋈* 	+&,-.&

Students(sid,sname,gpa)
People(ssn,pname,address)

Note that natural join is a 
theta join + a projection.



Equi-join (⋈	A=B)

• A theta join where q is an equality
• R1 ⋈	A=B R2   =  s A=B (R1 ´ R2)
• Example:
– Employee ⋈	SSN=SSN Dependents SELECT *

FROM 
Students S,
People P

WHERE sname = pname;

SQL:

RA:
#	 ⋈$%&'()*%&'( 	+

Students(sid,sname,gpa)
People(ssn,pname,address)

Most common join 
in practice!



Semijoin (⋉)

• R ⋉ S  = P A1,…,An (R ⋈ S)
• Where A1, …, An are the attributes in R
• Example:
– Employee ⋉	Dependents SELECT DISTINCT

sid,sname,gpa
FROM 
Students,People

WHERE
sname = pname;

SQL:

RA:

$%&'()%* ⋉ +(,-.(

Students(sid,sname,gpa)
People(ssn,pname,address)



Divison (÷)

– T(Y) = R(Y,X) ÷ S(X)

– Y is the set of attributes of R that are not attributes of S. 

– For a tuple t to appear in the result T of the Division, the values in t
must appear in R in combination with every tuple in S. 



Example

https://www.simple-talk.com/sql/t-sql-programming/divided-we-stand-the-sql-of-relational-division/

R(Y,X) T(Y)S(X)÷ =

SELECT PS1.pilot_name
FROM PilotSkills AS PS1, Hangar AS H1
WHERE PS1.plane_name = H1.plane_name
GROUP BY PS1.pilot_name 
HAVING COUNT(PS1.plane_name) = 

(SELECT COUNT(plane_name) FROM Hangar);



Multisets



Recall that SQL uses Multisets

Tuple

(1, a)

(1, a)

(1, b)

(2, c)

(2, c)

(2, c)

(1, d)

(1, d)

Tuple !(#)

(1, a) 2

(1, b) 1

(2, c) 3

(1, d) 2Equivalent 
Representations 

of a Multiset

Multiset X

Multiset X

Note: In a set all 
counts are {0,1}.

! # = “Count of tuple in 
X”
(Items not listed have 
implicit count 0)



Generalizing Set Operations to Multiset Operations

Tuple !(#)

(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X
Tuple !(%)

(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y
Tuple !(&)

(1, a) 2

(1, b) 0

(2, c) 2

(1, d) 0

Multiset Z

∩ =

! & = )*+(! # , ! % )
For sets, this is 
intersection



Tuple !(#)

(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X
Tuple !(%)

(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y
Tuple !(&)

(1, a) 7

(1, b) 1

(2, c) 5

(1, d) 2

Multiset Z

∪ =

! & = ! # + 	! %
For sets, 

this is union

Generalizing Set Operations to Multiset
Operations



Operations on Multisets

– sC(R): preserve the number of occurrences

– PA(R): no duplicate elimination

– Cross-product, join: no duplicate elimination

This is important-
relational engines work on multisets, not sets!



Complete Set of Relational Operations

• The set of operations including 
• Select s, 
• Project p
• Union È
• Difference �
• Rename r, and 
• Cartesian Product X

– is called a complete set
– because any other relational algebra expression can be expressed by a 

combination of these five operations.
• For example: 
– R Ç S = (R È S ) – ((R - S) È (S - R))
– R⋈<join condition>S = s <join condition> (R X S)



Table 8.1 Operations of Relational Algebra

continued on next slide



Table 8.1 Operations of Relational Algebra 
(continued)



Query Tree Notation

• Query Tree
– An internal data structure to represent a query 
– Standard technique for estimating the work involved in executing the 

query, the generation of intermediate results, and the optimization of 
execution 

– Nodes stand for operations like selection, projection, join, renaming, 
division, …. 

– Leaf nodes represent base relations
– A tree gives a good visual feel of the complexity of the query and the 

operations involved
– Algebraic Query Optimization consists of rewriting the query or 

modifying the query tree into an equivalent tree.





Example of Query Tree

• For every project located in Stafford, list the project number, dept. 
number, manager’s last name, address, and birth date

• (page 258)



Summary

• Total 8 basic operators:
– Unary relational operators (3)
• Selection: s
• Projection: P
• Renaming: r

– Binary relational operators (5)
• Union: ∪
• Intersect: ∩
• Set difference: -

• Cartesian Product (Join): ´ , ⋈
– Natural Join, Theta Join, Equi-Join, Semi-Join. 

• Division: ÷
• Tell us: How the query may be executed.



Acknowledgement

• Some of the slides in this presentation are taken from the slides 
provided by the authors. 

• Many of these slides are taken from cs145 course offered by
Stanford University.



MIDTERM REVIEW



Chapters to Read

• Chapter 1
• Chapter 2
• Chapter 3
• Chapter 4 (Just the basics. Only ISA relationships. Even studying the slides is fine)

• Chapter 5, 6, 7 (SQL)
• Chapter 9
• Chapter 14 (14.1-14.5)

• Chapter 15 (15.1-15.3)



Exam Structure

• Problem 1 (20 pts)
– Short answers, True/False, or One liner

• Other problems (55 pts)

• Plenty of SQL queries, ER diagram, BCNF decomposition questions. 

• Total: 75 pts



Time distribution

• Time crunch.
– Not as relaxed as the quiz

Notes:
I may curve the grades.

For example, If I decide 70 pts is equivalent to 100% score credit, I 
will scale all scores accordingly. If you have have scored more than 
70, for example, 75, those 5 points will be treated as extra-credit for 
future. 



MATERIALS COVERED



Questions to ponder

• Why not Lists? Why database?

• How related tables avoid problems associated with lists?



Problems with Lists

• Multiple Concepts or Themes:
–Microsoft Excel vs Microsoft Access

• Redundancy
• Anomalies:
– Deletion anomalies
– Update anomalies
– Insertion anomalies



List vs Database

• Lists do not provide information about relations!

• Break lists into tables

• Facilitates:
– Insert
– Delete 
– Update 

• Input and Output interface (Forms and Reports)

• Query!



Again, Why database?

• To store data
• To provide structure
• Mechanism for querying, creating, modifying and deleting data.  
• CRED (Create, Read, Update, Delete)
• Store information and relationships

• Database Schema vs. Database State



Simplified Database System Environment



SQL



General form SQL

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation steps:
1. Evaluate FROM-WHERE: apply condition 

C1 on the  attributes in R1,…,Rn

2. GROUP BY the attributes a1,…,ak
3. Apply condition C2 to each group (may 

have aggregates)
4. Compute aggregates in S and return the 

result



Grouping and Aggregation

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and aggregates

Semantics of the query:



1. Compute the FROM and WHERE clauses

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

SELECT   product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

FROM



Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10
Banana 10/10 1 10

2. Group by the attributes in the GROUP BY

SELECT   product, SUM(price*quantity) AS TotalSales
FROM     Purchase
WHERE    date > ‘10/1/2005’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10



3. Compute the SELECT clause: grouped attributes 
and aggregates

SELECT product, SUM(price*quantity) AS TotalSales
FROM     Purchase
WHERE    date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10



HAVING Clause

Same query as 
before, except 
that we consider 
only products that 
have more than
100 buyers

HAVING clauses contains conditions on aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas WHERE clauses condition on individual tuples…



Null Values

Unexpected behavior:

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Some Persons are not included !



Null Values

Can test for NULL explicitly:
– x IS NULL
– x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 

OR age IS NULL

Now it includes all Persons!



Inner Joins

By default, joins in SQL are “inner joins”:

SELECT Product.name, Purchase.store
FROM Product 
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Both equivalent:
Both INNER JOINS!



Inner Joins + NULLS = Lost data?

By default, joins in SQL are “inner joins”:

However: Products that never sold (with no Purchase tuple) will be lost!

SELECT Product.name, Purchase.store
FROM Product 
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)



name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase
INNER JOIN:

SELECT Product.name, Purchase.store
FROM Product 

INNER JOIN Purchase 
ON Product.name = Purchase.prodName

Note: another equivalent way to write an 
INNER JOIN!



name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase
LEFT OUTER JOIN:

SELECT Product.name, Purchase.store
FROM Product 

LEFT OUTER JOIN Purchase 
ON Product.name = Purchase.prodName



Other Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no match



Also read

• Triggers
• Views
• Operations on Databases
– Create, Drop, and Alter

• Operations of Tables
– Insert, Delete and Update

• Constraint:
– Key constraint
– Foreign key
– On Delete cascade, Set Null, Set Default;



DATABASE DESIGN



Database Design Process

1. Requirements analysis
– What is going to be stored? 

– How is it going to be used?

– What are we going to do with the data?

– Who should access the data?

Technical and non-
technical people are 
involved

1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, 
etc.



Database Design Process

2. Conceptual Design

– A high-level description of the database

– Sufficiently precise that technical people can understand 
it

– But, not so precise that non-technical people can’t 
participate

This is where E/R fits in.

1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, etc.



Database Design Process

1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, etc.

3. Implementation: 

• Logical Database Design

• Physical Database Design

• Security Design



This process is 
iterated many

times

E/R is a visual syntax for DB design which is precise enough for 
technical points, but abstracted enough for non-technical 

people

Database Design Process
1. Requirements Analysis 2. Conceptual Design 3. Logical, Physical, Security, etc.

MakesProduct

name category

price

Company

name

E/R Model & Diagrams used



Requirements Become the E-R Data Model

• After the requirements have been gathered, they 
are transformed into an Entity Relationship (E-R) 
Data Model

• E-R Models consist of
1. Entities
2. Attributes

a) Identifiers (Keys)
b) Non-key attributes

3. Relationships



1. E/R BASICS: ENTITIES & RELATIONS



Entities and Entity Sets

• An entity set has 
attributes
– Represented by ovals 

attached to an entity set

Product

name category

price

Shapes are
important. Colors are 
not.



Keys

• A key is a minimal set of attributes that 
uniquely identifies an entity.

Product

name category

price

Denote elements of the 
primary key by 
underlining.

Here, {name, category} is not a key 
(it is not minimal). 

The E/R model forces us to designate a single primary key, though there 
may be multiple candidate keys



Relationships

• A relationship connects two or more entity sets.
• It is represented by a diamond, with lines to each of the entity sets 

involved.
• The degree of the relationship defines the number of entity classes 

that participate in the relationship
– Degree 1 is a unary relationship
– Degree 2 is a binary relationship
– Degree 3 is a ternary relationship



Conceptual Unary Relationship

Person Marries



Conceptual Binary Relationship

Person CarsOwns



Conceptual Ternary Relationship

Patient DrugPrescription

Doctor



The R in E/R: Relationships

• E, R and A together:

Product

name category

price
Company

name

Makes



What is a Relationship?

MakesProduct

name category

price

Company

name

A relationship between entity sets P and C is a 
subset of all possible pairs of entities in P and C, 
with tuples uniquely identified by P and C’s keys



What is a Relationship?

name category price
Gizmo Electronics $9.99
GizmoLite Electronics $7.50
Gadget Toys $5.50

name
GizmoWorks
GadgetCorp

ProductCompany
C.name P.name P.category P.price
GizmoWorks Gizmo Electronics $9.99
GizmoWorks GizmoLite Electronics $7.50
GizmoWorks Gadget Toys $5.50
GadgetCorp Gizmo Electronics $9.99
GadgetCorp GizmoLite Electronics $7.50
GadgetCorp Gadget Toys $5.50

Company C  ×		Product P

MakesProduct

name category
price

Company

name

A relationship between entity sets P and C is a 
subset of all possible pairs of entities in P and C, 
with tuples uniquely identified by P and C’s keys



What is a Relationship?

name category price
Gizmo Electronics $9.99
GizmoLite Electronics $7.50
Gadget Toys $5.50

name
GizmoWorks
GadgetCorp

ProductCompany
C.name P.name P.category P.price
GizmoWorks Gizmo Electronics $9.99
GizmoWorks GizmoLite Electronics $7.50
GizmoWorks Gadget Toys $5.50
GadgetCorp Gizmo Electronics $9.99
GadgetCorp GizmoLite Electronics $7.50
GadgetCorp Gadget Toys $5.50

Company C 	×		Product P

C.name P.name
GizmoWorks Gizmo
GizmoWorks GizmoLite
GadgetCorp Gadget

Makes
MakesProduct

name category
price

Company

name

A relationship between entity sets P and C is a 
subset of all possible pairs of entities in P and C, 
with tuples uniquely identified by P and C’s keys



Product

name category

price
Company

name

Makes

since

• Relationships may have attributes as well.

For example: “since” 
records when company 
started making a 
product

Note: “since” is 
implicitly unique 
per pair here! 
Why?

Relationships and Attributes



Summary

• Summary

Identifying Relationship



Design Theory (ER model to Relations)



Entity Sets to Tables

Employees

lot

name

ssn

ssn name lot

123-22-3333 Alex 23

234-44-6666 Bob 44

567-88-9787 John 12

CREATE TABLE Employees ( ssn char(11),
name varchar(30),
lot Integer,
PRIMARY KEY (ssn))



Other Conversions (ER model to Tables)

• Relationships:
• Many to Many 
• One to Many
• One to One



Scenario

• One customer can have at max 2 loans. One loan can be 
given to multiple customers.

What it really means: 
– One customer can have (0,2) loans
– One loan can be given to (1,n) customer 
– This is a many to many scenario



Crow’s foot Notation

Chen Notation



FUNCTIONAL DEPENDENCIES



Prime and Non-prime attributes

• A Prime attribute must be a member of some candidate key

• A Nonprime attribute is not a prime attribute—that is, it is not a 
member of any candidate key. 



Back to Conceptual Design

Now that we know how to find FDs, it’s a straight-forward process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables until 
no more bad FDs

3. When done, the database schema is normalized



Boyce-Codd Normal Form (BCNF)

• Main idea is that we define “good” and “bad” FDs as follows:

– X à A is a “good FD” if X is a (super)key
• In other words, if A is the set of all attributes

– X à A is a “bad FD” otherwise

• We will try to eliminate the “bad” FDs!
– Via normalization



Normalizing into 2NF and 3NF



Figure 14.12 Normalization into 2NF and 3NF

Figure 14.12
Normalization into 2NF 
and 3NF. (a) The LOTS 
relation with its 
functional dependencies 
FD1 through FD4. 
(b) Decomposing into 
the 2NF relations LOTS1 
and LOTS2. (c) 
Decomposing LOTS1 
into the 3NF relations 
LOTS1A and LOTS1B. 
(d) Progressive 
normalization of LOTS 
into a 3NF design.



Normal Forms Defined Informally

• 1st normal form
– All attributes depend on the key

• 2nd normal form
– All attributes depend on the whole key

• 3rd normal form
– All attributes depend on nothing but the key



General Definition of 2NF  and 3NF (For Multiple Candidate Keys) 

• A relation schema R is in second normal form (2NF) if every non-
prime attribute A in R is fully functionally dependent on every key 
of R

• A relation schema R is in third normal form (3NF) if it is in 2NF and
no non-prime attribute A in R is transitively dependent on any key 
of R



1. BOYCE-CODD NORMAL FORM



Figure 14.14 A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation 
TEACH:
– fd1: { student, course} -> instructor
– fd2: instructor -> course 

• {student, course} is a candidate key 
for this relation 

• So this relation is in 3NF but not in
BCNF 

• A relation NOT in BCNF should be 
decomposed so as to meet this 
property, 
– while possibly forgoing the preservation 

of all functional dependencies in the 
decomposed relations.



Achieving the BCNF by Decomposition (2)

n Three possible decompositions for relation TEACH
nD1: {student, instructor} and {student, course}
nD2: {course, instructor } and {course, student}
nD3: {instructor, course } and {instructor, student} ü



4.3 Interpreting the General Definition of Third  Normal Form (2) 

n ALTERNATIVE DEFINITION of 3NF: We can restate the definition as:
A relation schema R is in third normal form (3NF) if, 

whenever a nontrivial FD XàA holds in R, either

a) X is a superkey of R or 

b) A is a prime attribute of R

The condition (b)  takes care of the dependencies that “slip 

through” (are allowable to) 3NF but are “caught by” BCNF 

which we discuss next. 



1. BOYCE-CODD NORMAL FORM



What you will learn about in this section

1. Boyce-Codd Normal Form

2. The BCNF Decomposition Algorithm



5. BCNF (Boyce-Codd Normal Form) 

• Definition of 3NF: 
• A relation schema R is in 3NF if, whenever a nontrivial FD XàA holds in 

R, either
a) X is a superkey of R or 
b) A is a prime attribute of R

• A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever 
an FD X → A holds in R, then 

a) X is a superkey of R
b) There is no b

• Each normal form is strictly stronger than the previous one
– Every 2NF relation is in 1NF
– Every 3NF relation is in 2NF
– Every BCNF relation is in 3NF



Boyce-Codd normal form

Figure 14.13
Boyce-Codd normal form. (a) BCNF normalization of 

LOTS1A with the functional dependency FD2 being lost in 
the decomposition. (b) A schematic relation with FDs; it is 

in 3NF, but not in BCNF due to the f.d. C → B.



A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation 
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key 
for this relation 

• So this relation is in 3NF but not in
BCNF 

• A relation NOT in BCNF should be 
decomposed

X à A



Achieving the BCNF by Decomposition

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}ü



Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

In other words: there are no “bad” FDs

A relation R is in BCNF if:

if {X1, ..., Xn} à A is a non-trivial FD in R

then {X1, ..., Xn}  is a superkey for R



Example

What is the key?
{SSN, PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

{SSN} à {Name,City}

⟹	Not in BCNF

This FD is bad 
because it is not a 
superkey



Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Madison

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121

987-65-4321 908-555-1234

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

{SSN} à {Name,City}

Now in BCNF!

This FD is now 
good because it is 
the key



BCNF Decomposition

BCNFDecomp(R):

If Xà A causes BCNF violation:
Decompose R into
R1= XA
R2 = R –A
(Note: X is present in both R1 and R2)

Return BCNFDecomp(R1), BCNFDecomp(R2)



R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

Example

BCNFDecomp(R):

If Xà A causes BCNF violation:
Decompose R into
R1= XA
R2 = R –A
(Note: X is present in both R1 and 
R2)

Return BCNFDecomp(R1), 
BCNFDecomp(R2)



Example

R(A,B,C,D,E)
{A}+ = {A,B,C,D} ≠ {A,B,C,D,E}

R1(A,B,C,D)
{C}+ = {C,D} ≠ {A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}



2. DECOMPOSITIONS



Recap: Decompose to remove redundancies

1. We saw that redundancies in the data (“bad FDs”) can lead to 
data anomalies

2. We developed mechanisms to detect and remove redundancies 
by decomposing tables into BCNF
1. BCNF decomposition is standard practice- very powerful & widely 

used!

3. However, sometimes decompositions can lead to more subtle 
unwanted effects…

When does this happen?



Decompositions in General

R1 = the projection of R on A1, ..., An, B1, ..., Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp
) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R2 = the projection of R on A1, ..., An, C1, ..., Cp



Theory of Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price
Gizmo 19.99
OneClick 24.99
Gizmo 19.99

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

I.e. it is a Lossless 
decomposition

Sometimes a 
decomposition is 
“correct”



Lossy Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

Price Category
19.99 Gadget
24.99 Camera
19.99 Camera

What’s wrong 
here?

However 
sometimes it isn’t



Lossless Decompositions

A decomposition R to (R1, R2) is lossless if R = R1 Join R2

R(A1,...,An,B1,...,Bm,C1,...,Cp
) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)



Lossless Decompositions

BCNF decomposition is always lossless.  Why?

Note: don’t need 
{A1, ..., An} à {C1, ..., Cp}

If {A1, ..., An} à {B1, ..., Bm}
Then the decomposition is lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp
) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)



A relation TEACH that is in 3NF but not in BCNF

• Two FDs exist in the relation 
TEACH:

– {student, course} à instructor
– instructor à course

• {student, course} is a candidate key 
for this relation 

• So this relation is in 3NF but not in
BCNF 

• A relation NOT in BCNF should be 
decomposed

X à A



Achieving the BCNF by Decomposition (2)

• Three possible decompositions for relation TEACH
– D1: {student, instructor} and {student, course}

– D2: {course, instructor } and {course, student}

– D3: {instructor, course } and {instructor, student}ü



A problem with BCNF

Problem: To enforce a FD, must reconstruct 
original relation—on each insert!



A Problem with BCNF

{Unit} à {Company}
{Company,Product} à {Unit}

We do a BCNF decomposition 
on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product} à {Unit}!!

Unit Company Product
… … …

Unit Company
… …

Unit Product
… …

{Unit} à {Company}



So Why is that a Problem?

No problem so far. 
All local FD’s are 
satisfied.

Unit Company
Galaga99 UW
Bingo UW

Unit Product
Galaga99 Databases
Bingo Databases

Unit Company Product
Galaga99 UW Databases
Bingo UW Databases

Let’s put all the 
data back into a 
single table again:

{Unit} à {Company}

Violates the FD {Company,Product} à {Unit}!!



The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which satisfy 
their local FDs but when reconstruct it violates some FD across 
tables!

Practical Problem: To enforce FD, must 
reconstruct R—on each insert!



Possible Solutions

• Various ways to handle so that decompositions are all lossless / no 
FDs lost
– For example 3NF- stop short of full BCNF decompositions.  

• Usually a tradeoff between redundancy / data anomalies and FD 
preservation…

BCNF still most common- with additional steps to 
keep track of lost FDs…



Other Topics

• Problem Set 5 (Really important)

– Cover
–Minimal Cover
– BCNF violations and Decomposition


