
CSC 261/461 – Database Systems
Lecture 16

Spring 2018

The IO Model & External Sorting

Today’s Lecture

• Chapter 16 (Disk Storage, File Structure and Hashing)
• Chapter 17 (Indexing)

This chapters cover a lot of details and it’s not possible to
cover everything in class.

So please study as much as you can

Simplified Database System Environment

What you will learn about in this section

1. Storage and memory model

2. Buffer

1. THE BUFFER

High-level: Disk vs. Main Memory

• Disk:

– Slow
• Sequential access

– (although fast sequential reads)

– Durable
• We will assume that once on disk,

data is safe!

– Cheap

• Random Access Memory (RAM) or Main Memory:

– Fast
• Random access, byte addressable

– ~10x faster for sequential access
– ~100,000x faster for random access!

– Volatile
• Data can be lost if e.g. crash occurs, power goes out, etc!

– Expensive
• For $100, get 16GB of RAM vs. 2TB of disk!

High-level: Disk vs. Main Memory

• Keep in mind the tradeoffs here as motivation for the
mechanisms we introduce

–Main memory: fast but limited capacity, volatile
• Vs.

– Disk: slow but large capacity, durable

High-level: Disk vs. Main Memory

How do we effectively utilize both ensuring certain critical guarantees?

Hardware Description of Disk Devices

• Information is stored on a disk
surface in concentric circles
(Track)

• Tracks with same diameter on
various surfaces is called
cylinder

• Tracks are divided into sectors
• OS divides a track into equal

sized disk blocks (pages)
– One page = one or more sectors

A Simplified Filesystem Model

• For us, a page is a fixed-sized array of
memory
– One (or more) disk block (blocks)
– Interface:

• write to an entry (called a slot) or set to “None”

• And a file is a variable-length list of pages
– Interface: create / open / close; next_page();

etc.

Disk

1,0,3 1,0,3File

Page

The Buffer

Disk

Main Memory

Buffer

• Transfer of data between main memory and disk
takes place in units of disk blocks.

• The hardware address of a block is a combination
of a cylinder number, track number, and block
number.

• A buffer is a region of physical memory used to
store a single block.

• Sometimes, several contiguous blocks can be
copied into a cluster

– In this lecture: We will mostly not distinguish
between a buffer and a cluster.

• Key idea: Reading / writing to disk is slow- need to
cache data!

Main Memory

Buffer

The (Simplified) Buffer

• In this class: We’ll consider a buffer
located in main memory that
operates over pages and files:

Disk
1,0,31,0,3

• Read(page): Read page from disk ->
buffer if not already in buffer

Main Memory

Buffer

The (Simplified) Buffer

• In this class: We’ll consider a buffer
located in main memory that
operates over pages and files:

Disk
1,0,3

1,0,3
• Read(page): Read page from disk ->

buffer if not already in buffer

02

Processes can then read from
/ write to the page in the
buffer

Main Memory

Buffer

The (Simplified) Buffer

• In this class: We’ll consider a buffer
located in main memory that
operates over pages and files:

Disk
1,0,3

1,2,3
• Read(page): Read page from disk ->

buffer if not already in buffer

• Flush(page): Evict page from buffer &
write to disk

Main Memory

Buffer

The (Simplified) Buffer

• In this class: We’ll consider a buffer
located in main memory that
operates over pages and files:

Disk
1,0,3

1,2,3
• Read(page): Read page from disk ->

buffer if not already in buffer

• Flush(page): Evict page from buffer &
write to disk

• Release(page): Evict page from buffer
without writing to disk

Main Memory

Buffer

Disk

• Database maintains its own buffer

– Why? The OS already does this…

– DB knows more about access patterns.

– Recovery and logging require ability to
flush to disk.

Managing Disk: The DBMS Buffer

The Buffer Manager

• A buffer manager handles supporting operations for the
buffer:

– Primarily, handles & executes the “replacement policy”
• i.e. finds a page in buffer to flush/release if buffer is full and a new

page needs to be read in

– DBMSs typically implement their own buffer management routines

Use of Two Buffer

B

Buffer Replacement Strategies

• Least recently used (LRU)

• Clock policy

• First-in-first-out (FIFO)

• Refer 16.3.2 for details

Records and Files

• Data is usually stored in the form of records

• Each record consists of a collection of related data values or items.
– Record usually describe entities

File Types

• Unordered Records (Heap Files)

• Ordered Records (Sorted Files)

Heap Files

• Insertion (of a record):
– Very efficient.
– Last disk block is copied into a buffer
– New record is added
– Block is rewritten back to disk

• Searching:
– Linear search

• Deletion:
– Rewrite empty block after deleting record. (or)
– Use deletion marker

Sorted Files

• Physically sort the records of a file
– Based on the values of one of the fields (ordering fields)
– Ordered and sequential file

• Searching:
– Can perform Binary Search.

• Insertion and Deletion:
– Expensive

Average Access Times for a File of b Blocks under Basic
File Organizations

2. EXTERNAL MERGE & SORT

Challenge: Merging Big Files with Small Memory

How do we efficiently merge two sorted files when both are
much larger than our main memory buffer?

External Merge Algorithm

• Input: 2 sorted lists of length M and N

• Output: 1 sorted list of length M + N

• Required: At least 3 Buffer Pages

• IOs: 2(M+N)

STOP!
Think about the solution before you proceed!
The idea is same as merge step in Merge sort

Recap: Merge Sort

6 2 8 4 3 7 5 16 2 8 4 3 7 5 1

Merge-Sort(A, 0, 7)
Divide

A:

CSC172, Spring 2018

6 2 8 4

3 7 5 1

6 2 8 4

Merge-Sort(A, 0, 3) , divide
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

8 4

6 26 2

Merge-Sort(A, 0, 1) , divide
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

8 4

6

2

Merge-Sort(A, 0, 0) , base case
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

8 4

6 2

Merge-Sort(A, 0, 0), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

8 4

6

2

Merge-Sort(A, 1, 1) , base case
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

8 4

6 2

Merge-Sort(A, 1, 1), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

8 4

2 6

Merge(A, 0, 0, 1)
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

8 42 6

Merge-Sort(A, 0, 1), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

8 4

2 6

Merge-Sort(A, 2, 3)

48

, divide
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

4

2 6

8

Merge-Sort(A, 2, 2), base case
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

4

2 6

8

Merge-Sort(A, 2, 2), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

4

2 6

8

Merge-Sort(A, 3, 3), base case
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

4

2 6

8

Merge-Sort(A, 3, 3), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

2 6

4 8

Merge(A, 2, 2, 3)
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

2 6 4 8

Merge-Sort(A, 2, 3), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

2 4 6 8

Merge(A, 0, 1, 3)
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 12 4 6 8

Merge-Sort(A, 0, 3), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

3 7 5 1

2 4 6 8

Merge-Sort(A, 4, 7)
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

1 3 5 7

2 4 6 8A:

Merge (A, 4, 5, 7)

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

1 3 5 72 4 6 8

Merge-Sort(A, 4, 7), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018

1 2 3 4 5 6 7 8

Merge(A, 0, 3, 7)
A:

Merge-Sort(A, 0, 7)
Merge-Sort(A, 0, 7), done!

CSC172, Spring 2018

A[middle]A[left]

Sorted
FirstPart

Sorted
SecondPart

Merge-Sort: Merge

A[right]

merge

A:

A:

Sorted

CSC172, Spring 2018

6 10 14 223 5 15 28
L: R:

Temporary Arrays

5 15 28 30 6 10 145

Merge-Sort: Merge Example

2 3 7 8 1 4 5 6A:

CSC172, Spring 2018

Merge-Sort: Merge Example

3 5 15 28 30 6 10 14

L:

A:

3 15 28 30 6 10 14 22

R:

i=0 j=0

k=0

2 3 7 8 1 4 5 6

1

CSC172, Spring 2018

Merge-Sort: Merge Example

1 5 15 28 30 6 10 14

L:

A:

3 5 15 28 6 10 14 22

R:

k=1

2 3 7 8 1 4 5 6

2

i=0 j=1

CSC172, Spring 2018

Merge-Sort: Merge Example

1 2 15 28 30 6 10 14

L:

A:

6 10 14 22

R:

i=1

k=2

2 3 7 8 1 4 5 6

3

j=1

CSC172, Spring 2018

Merge-Sort: Merge Example

1 2 3 6 10 14

L:

A:

6 10 14 22

R:

i=2 j=1

k=3

2 3 7 8 1 4 5 6

4

CSC172, Spring 2018

Merge-Sort: Merge Example

1 2 3 4 6 10 14

L:

A:

6 10 14 22

R:

j=2

k=4

2 3 7 8 1 4 5 6

i=2

5

CSC172, Spring 2018

Merge-Sort: Merge Example

1 2 3 4 5 6 10 14

L:

A:

6 10 14 22

R:

i=2 j=3

k=5

2 3 7 8 1 4 5 6

6

CSC172, Spring 2018

Merge-Sort: Merge Example

1 2 3 4 5 6 14

L:

A:

6 10 14 22

R:

k=6

2 3 7 8 1 4 5 6

7

i=2 j=4
CSC172, Spring 2018

Merge-Sort: Merge Example

1 2 3 4 5 6 7 14

L:

A:

3 5 15 28 6 10 14 22

R:
2 3 7 8 1 4 5 6

8

i=3 j=4

k=7

CSC172, Spring 2018

Merge-Sort: Merge Example

1 2 3 4 5 6 7 8

L:

A:

3 5 15 28 6 10 14 22

R:
2 3 7 8 1 4 5 6

i=4 j=4

k=8

CSC172, Spring 2018

Key (Simple) Idea

To find an element that is no larger than all elements in two lists,
one only needs to compare minimum elements from each list.

If:
!" ≤ !$ ≤ ⋯ ≤ !&
'" ≤ '$ ≤ ⋯ ≤ '(

Then:
)*+(!", '") ≤ !/
)*+(!", '") ≤ '0

for i=1….N and j=1….M

External Merge Algorithm

7,11 20,31

23,24 25,30

Input:
Two sorted
files

Output:
One merged
sorted file

Disk

Main Memory

Buffer
1,5

2,22

F1

F2

External Merge Algorithm

7,11 20,31

23,24 25,30

Dis
k

Main Memory

Buffer

1,5 2,22
Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

External Merge Algorithm

7,11 20,31

23,24 25,30

Dis
k

Main Memory

Buffer

5 22 1,2
Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

External Merge Algorithm

7,11 20,31

23,24 25,30

Dis
k

Main Memory

Buffer

5 22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

External Merge Algorithm

20,31

23,24 25,30

Dis
k

Main Memory

Buffer

522

1,2

This is all the algorithm
“sees”… Which file to load a
page from next?

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

7,11

External Merge Algorithm

20,31

23,24 25,30

Dis
k

Main Memory

Buffer

522

1,2

We know that F2 only
contains values ≥ 22… so we
should load from F1!

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

7,11

External Merge Algorithm

20,31

23,24 25,30

Dis
k

Main Memory

Buffer

522

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
7,11

External Merge Algorithm

20,31

23,24 25,30

Dis
k

Main Memory

Buffer

5,722

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
11

External Merge Algorithm

20,31

23,24 25,30

Dis
k

Main Memory

Buffer

5,7

22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
11

External Merge Algorithm

23,24 25,30

Dis
k

Main Memory

Buffer

5,7

22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
11

20,31

And so on…

We can merge lists of arbitrary
length with only 3 buffer pages.

If lists of size M and N, then
Cost: 2(M+N) IOs

Each page is read once, written once

Acknowledgement

• Some of the slides in this presentation are taken from the slides
provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

