
CSC 261/461 – Database Systems
Lecture 17

Spring 2018

Did you study?

• Chapter 16 and 17

BASICS

Page

• The unit of information read from or written to the disk

How do we measure efficiency?

• The cost of page I/O
– i.e., Input from disk to main memory and output from memory to disk

How is a relation (table) stored?

• As a file of records

File

Page Record / Tuple

Blocking Factor

• How many records a block can hold

• !"# = ⌊!"⌋

• B = Block size
• R = fixed length record

Records and Record Types

Data in Database
=

A set of records organized into a set of files

• Each record consists of a collection of related data values or items
• Each value corresponds to a particular attribute
– Takes one or more bytes

Fixed Length Records vs Variable Length Records

• Fig 16.5 (from textbook)

Record Blocking

• Block Size = !	bytes
• Fixed Record Size = # bytes

• With ! > #:
– Records per block = !"#	 = ⌊!"⌋
– Unused space per block = (– 	!"# ∗ + = B mod R

• Number of Blocks required = ⌈ #/()* ⌉

• Two scenarios:
– Spanned: records can span more than one block
– Unspanned: records can’t span more than one block

Unspanned vs Spanned

Unspanned

Spanned

Sorted Files

• Fig 16.7

Sorted Files (zoomed)

• Fig 16.7

Heap Files vs Sorted Files

• Insertion
• (Heap vs Sorted)
• For Sorted files: Overflow

• Deletion
– Deletion Marker

• Modifying
– For Sorted files: May consist of Deletion and Insertion

• Searching
– How many block access?
– (by record number) What if the records are numbered and are of fixed

size?
– Searching by range (Heap vs Sorted)

Another variety

• Another type of files beyond:
– Heap Files and Sorted Files

– Hashed Files

Primary File Organization

• How the file records are physically placed?
• Heap File
– No particular order

• Sorted File
– Ordered by the value of a particular field

• Hashed File
– A hash function applied to a particular field to determine a records

placement.

HASHING TECHNIQUES

HASHING – GENERAL IDEAS

- Hashing first proposed by Arnold Dumey (1956)
- Hash codes
- Chaining
- Open addressing

Top level view

Arbitrary objects
(strings, doubles, ints)

n Objects
actually
used

Hash
code

{0,1,…,m-1}
int with
wide range

h(object)

Compression
function

m

We will also call
this the hash function

Example (Once again!)

Java HashCode

True / False

• Unequal objects must have different hash codes

• Objects with the same hash code must be equal

• Both Wrong
–We would like this but it’s impossible to achieve
– Still possible for a particular set of values but impossible if input values

are unknown prior to applying the hashcode.

Good Hash Function

• If key1 ≠ key2, then it’s extremely unlikely that
h(key1) = h(key2)
– Collision problem!

• Pigeonhole principle
– K+1 pigeons, K holes à at least one hole with ≥ 2 pigeons

Compression: Division method

• How does this function perform for different m?
h(s) = s mod m

COLLISION RESOLUTION

Separate chaining

Open addressing

Separate Chaining

Turing

Cantor

Knuth

Karp

Dijkstra

Index Pointer

0

1

2

3

4

Turing Knuth Dijkstra

Karp Cantor

Open Addressing

• Store all entries in the hash table itself, no pointer to the “outside”

• Advantage
– Less space waste
– Perhaps good cache usage

• Disadvantage
–More complex collision resolution
– Slower operations

Open Addressing

Turing

Cantor

Knuth

Karp

Dijkstra

Index Pointer

0

1

2

3

4

5

6

7

Turing

Knuth

Dijkstra
Karp

Cantor

h(“Knuth”, 0)
h(“Knuth”, 1)

h(“Karp”, 0) h(“Karp”, 1)

h(“Dijkstra”, 0)

h(“Dijkstra”, 1)

h(“Dijkstra”, 2)

External Hashing

• Hashing for disk files

• Target address space is made of buckets

• Hashing function maps a key into relative bucket number

• Convert the bucket number into corresponding disk block address

Bucket Number to Disk Block address

Bucket Number to Disk Block address

Hash Function used = s mod 10

REVIEW

What Did We Learn

• Disk Storage
– Hardware Description of Disk Devices
• Sections to study: 16.2.1 and 16.2.2

• Buffering of Blocks
• Buffer Management
• Buffer Replacement Strategies
• Sections to study: 16.3

• Placing File Records on Disk
• Records and Record Types
• Fixed-Length, Variable-Length, Spanned, Unspanned
• Sections to study: 16.4.1 to 16.4.4

What did we learn

• Operations on Files
• Insert, Modify, and Delete
• And others.
• Sections to study: 16.5

• Heap Files vs Sorted Files
• Sections to study: 16.6 and 16.7

• Hash Files
• Internal Hashing and External Hashing
• Sections to study: 16.8.1 and 16.8.2

INDEXING

Types of Indexing

• Primary Indexes

• Clustering Indexes

• Secondary Indexes

• Multilevel Indexes
– Dynamic Multilevel Indexes

• Hash Indexes

What you will learn about in this section

1. Indexes: Motivation

2. Indexes: Basics

Index Motivation (1)

• Suppose we want to search for people of a specific age

• First idea: Sort the records by age… we know how to do this fast!

• How many IO operations to search over N sorted records?
– Simple scan: O(N)
– Binary search: O(!"#!$)

Person(name, age)

Could we get even cheaper search? E.g. go from
!"#!$à !"#!""$?

Index Motivation (2)

• What about if we want to insert a new person, but keep the list
sorted?

• We would have to potentially shift N records, requiring up to ~
2*N/P IO operations (where P = # of records per page)!
– We could leave some “slack” in the pages…

4,5 6,71,3 3,4 5,61,2

2

7,

Could we get faster insertions?

Index Motivation (3)

• What about if we want to be able to search quickly along
multiple attributes (e.g. not just age)?
–We could keep multiple copies of the records, each sorted by one

attribute set… this would take a lot of space

Can we get fast search over multiple attribute
(sets) without taking too much space?

Indexes

We’ll create separate data structures called
indexes to address all these points

Further Motivation for Indexes: NoSQL!

• NoSQL engines are (basically) just indexes!

– A lot more is left to the user in NoSQL… one of the primary
remaining functions of the DBMS is still to provide index over the
data records, for the reasons we just saw!

– Sometimes use B+ Trees, sometimes hash indexes

Indexes are critical across all DBMS types

Indexes: High-level

• An index on a file speeds up selections on the search key
fields for the index.
– Search key properties

• Any subset of fields
• is not the same as key of a relation

• Example: On which attributes
would you build

indexes?
Product(name, maker, price)

More precisely

• An index is a data structure mapping search keys to sets of
rows in a database table

– Provides efficient lookup & retrieval by search key value- usually
much faster than searching through all the rows of the database
table

• An index can store:
– Full rows it points to (primary index) or
– Pointers to those rows (secondary index)

Operations on an Index

• Search: Quickly find all records which meet some condition on the
search key attributes
–More sophisticated variants as well. Why?

Indexing is one the most important features
provided by a database for performance

Conceptual Example

What if we want to
return all books
published after 1867?
The above table might
be very expensive to
search over row-by-
row…

SELECT *
FROM Russian_Novels
WHERE Published > 1867

BID Title Author Published Full_text

001 War and Peace Tolstoy 1869 …

002 Crime and
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Russian_Novels

Conceptual Example

BID Title Author Published Full_text

001 War and Peace Tolstoy 1869 …

002 Crime and
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Published BID
1866 002

1869 001

1877 003

Maintain an index for this, and search over
that!

Russian_NovelsBy_Yr_Index

Why might just keeping the table
sorted by year not be good enough?

Conceptual Example

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …

002 Crime and
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Published BID

1866 002

1869 001

1877 003

Indexes shown here as tables, but in reality
we will use more efficient data structures…

Russian_NovelsBy_Yr_Index

Author Title BID
Dostoyevsky Crime and

Punishment
002

Tolstoy Anna Karenina 003

Tolstoy War and Peace 001

By_Author_Title_Index Can have multiple indexes to
support multiple search keys

Covering Indexes

Published BID

1866 002

1869 001

1877 003

By_Yr_Index

We say that an index is covering for a specific
query if the index contains all the needed
attributes- meaning the query can be answered
using the index alone!

The “needed” attributes are the union of those in
the SELECT and WHERE clauses…

SELECT Published, BID
FROM Russian_Novels
WHERE Published > 1867

Example:

TYPES OF INDEXES

Types of Indexing

• Primary Indexes

• Clustering Indexes

• Secondary Indexes

• Multilevel Indexes
– Dynamic Multilevel Indexes

• Hash Indexes

• Easy introduction: https://www.tutorialspoint.com/dbms/dbms_indexing.htm

Sorted Files

• Fig 16.7

Recap: No Indexing

Sorted Files (zoomed)

• Fig 16.7

Recap: No Indexing

Primary Indexes: Index for Sorted (Ordered) Files

Clustering Indexes (Index for Sorted (on non-key) Files)

Clustering Indexes (Index for Sorted (on non-key) Files)

Don’t get confused by
these two arrows.
They are pointing to
the same block

Points to the first block
that contains the
clustering field

Secondary Indexes (on a key field)

• Secondary
means of
accessing a
data file

• File records
could be
ordered,
unordered,
or hashed

Note: The data file is a
heap file, i.e., not sorted

Secondary Indexes (on a key field)

Note: The data file may be a
heap file, i.e., not sorted

Secondary Indexes (on a non-key field)
Extra level of indirection

• Provides logical ordering
– Though records are not

physically ordered

Secondary Indexes (on a non-key field)
Extra level of indirection

Reminder

• Please Study Chapter 16 and 17

Acknowledgement

• Some of the slides in this presentation are taken from the slides
provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

