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Sections to Study
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External Merge Sort
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Why are Sort Algorithms Important?

• Data requested from DB in sorted order is extremely 
common
– e.g., find students in increasing GPA order

• Why not just use quicksort in main memory??
–What about if we need to sort 1TB of data with 1GB of RAM…

A classic problem in computer science!
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So how do we sort big files?

1. Split into chunks small enough to sort in memory (“runs”)

2. Merge pairs (or groups) of runs using the external merge 
algorithm

3. Keep merging the resulting runs (each time = a “pass”) until left 
with one sorted file!
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Before we proceed.. 

• Question: Assume each page/block can contain 100 records. You 
have a file containing 80 unsorted records. What is the IO cost of
sorting this file.
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A.   80 * log2 80 IO

B.   1 IO

C.   2 IO

D. log2 80 IO
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EXTERNAL MERGE & SORT
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Challenge: Merging Big Files with Small Memory

How do we efficiently merge two sorted files when both are 
much larger than our main memory buffer?
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External Merge Algorithm

• Input: 2 sorted lists of length M and N

• Output: 1 sorted list of length M + N

• Required: At least 3 Buffer Pages

• IOs: 2(M+N)
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Key (Simple) Idea

To find an element that is no larger than all elements in two lists, 
one only needs to compare minimum elements from each list.

If:
!! ≤ !" ≤ ⋯ ≤ !#
$! ≤ $" ≤ ⋯ ≤ $$

Then:
%&'(!!, $!) ≤ !%
%&'(!!, $!) ≤ $&

for i=1….N and j=1….M 
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External Merge Algorithm
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External Merge Algorithm
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Disk
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“sees”… Which file to load a 
page from next?
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External Merge Algorithm
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contains values ≥ 22… so we 
should load from F1!
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External Merge Algorithm
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External Merge Algorithm
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External Merge Algorithm

20,31

23,24 25,30

Disk
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sorted file

F1

F2
11

CSC 261, Spring 2018, UR 



External Merge Algorithm

23,24 25,30

Disk

Main Memory

Buffer

5,7

22

1,2

Input:
Two sorted 
files

Output:
One merged
sorted file

F1

F2
11

20,31

And so on…
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We can merge lists of arbitrary 
length with only 3 buffer pages.

If lists of size M and N, then
Cost: 2(M+N) IOs

Each page is read once, written once
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External Merge Sort Algorithm

27,24 3,1

Example:
• 3 Buffer 

pages
• 6-page file

Disk Main Memory
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18,22
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1. Split into chunks small enough to sort in memory

Orange file 
= unsorted
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EXTERNAL MERGE SORT (BEFORE 
MERGE)
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External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2
31,33 44,5510,12

Example:
• 3 Buffer 

pages
• 6-page file

1. Split into chunks small enough to sort in memory

Orange file 
= unsorted
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External Merge Sort Algorithm

Disk Main Memory

Buffer
F1

F2

31,33 44,5510,12

And similarly for F2

27,24 3,118,22
18,22 24,271,3

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer 

pages
• 6-page file
Each 
sorted file 
is a called 
a run
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External Merge Sort Algorithm

Disk Main Memory

Buffer
F1

F2

2.  Now just run the external merge algorithm & we’re done!

31,33 44,5510,12

18,22 24,271,3

Example:
• 3 Buffer 

pages
• 6-page file
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Calculating IO Cost

For 3 buffer pages, 6 page file:

1. Split into two 3-page files and sort in memory 
1. = 1 R + 1 W for each file = 2*(3 + 3) = 12 IO operations

2. Merge each pair of sorted chunks using the external merge 
algorithm 
1. = 2*(3 + 3) = 12 IO operations

(if this explanation makes more sense: Reading contents of all pages only once 
writing them only once --- so, 6 + 6 = 12 IO)

3. Total cost = 24 IO
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Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

Assume we still 
only have 3 buffer 
pages (Buffer not 
pictured)

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31
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Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

1. Split into files small enough to 
sort in buffer…

Assume we still 
only have 3 buffer 
pages (Buffer not 
pictured)
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Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

1. Split into files small enough to 
sort in buffer… and sort

Assume we still 
only have 3 buffer 
pages (Buffer not 
pictured)

Call each of these 
sorted files a run
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Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

2. Now merge 
pairs of (sorted) 
files… the 
resulting files 
will be sorted!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Assume we still 
only have 3 buffer 
pages (Buffer not 
pictured)
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Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

3. And repeat…

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Assume we still 
only have 3 buffer 
pages (Buffer not 
pictured)

Call each of these 
steps a pass
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Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

4. And repeat!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Disk

3,10 10,101,3

12,16 18,1812,12

20,22 22,2318,18

24,24 27,2723,24

31,31 31,3327,31

33,38 39,4033,33

43,44 44,4541,42

48,55 55,5546,47
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Simplified 3-page Buffer Version

Assume for simplicity that we split an N-page file into N single-
page runs and sort these; then:

• First pass: Merge N/2 pairs of runs each of length 1 page

• Second pass: Merge N/4 pairs of runs each of length 2 pages

• In general, for N pages, we do !"#!$ passes
– +1 for the initial split & sort

• Each pass involves reading in & writing out all the pages = 2N 
IO

Unsorted input file

Split & sort

Merge

Merge

Sorted!

à 2N*( !"#!$ +1) total IO cost!  
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Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

1. Increase length of initial runs. Sort B+1 at a time!
At the beginning, we can split the N pages into runs of length B+1 and 
sort these in memory

2"( log!" + 1)

IO Cost:

Starting with runs 
of length 1

2"( log!
*

++ , + 1)

Starting with runs of 
length B+1
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Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

2. Perform a B-way merge. 
On each pass, we can merge groups of B runs at a time (vs. merging 
pairs of runs)!
IO Cost:

2"( log!" + 1) 2"( log!
*

++ , + 1)

Starting with runs 
of length 1

Starting with runs of 
length B+1

2"( log"
*

++ , + 1)

Performing B-way 
merges
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What Next!

• Query Processing (Chapter 18) 
• Query Optimization (Chapter 19)
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QUERY PROCESSING 
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Steps in Query Processing

• Scanning
• Parsing
• Validation
• Query Tree Creation
• Query Optimization (Query planning)
• Code generation (to execute the plan)
• Running the query code
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Steps in Query Processing
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SQL Queries

• SQL Queries are decomposed into Query blocks:
– Select…From…Where…Group By…Having

• Translate Query blocks into Relational Algebraic expression 

• Remember, SQL includes aggregate operators:
–MIN, MAX, SUM, COUNT etc.
– Part of the extended algebra
– Let’s go back to Chapter 8 (Section 8.4.2)
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Aggregate Functions and Grouping (Relational Algebra)

• Aggregate function: ℑ

• < "#$%&'("	*++#',%+-. > ℑ < 0%(1+'$(	2'.+ > (R)

CSC 261, Spring 2018, UR 

Dno ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE). 



Semijoin (⋉)

• R ⋉ S  = P A1,…,An (R ⋈ S)
• Where A1, …, An are the 

attributes in R
• Example:
– Employee ⋉	Dependents 

SELECT DISTINCT
sid,sname,gpa

FROM 
Students,People

WHERE
sname = pname;

SQL:

RA:
"#$%&'#( ⋉ )&*+,&

Students(sid,sname,gpa)
People(ssn,pname,address)

SELECT DISTINCT
sid,sname,gpa

FROM 
Students

WHERE
sname IN 

(SELECT pname FROM People);

OR
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Algorithm for External Sorting

• We have already covered 
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Algorithm fro Select Operation

• Read Section 18.3 (18.3.1 , 18.3.2, 18.3.3, 18.3.4)
• Mostly covers searching:

• 1. Linear Search
• 2. Binary Search
• 3. Indexing
• 4. Hashing
• 5. B+ Tree

• (Skip bitmap index and functional index if you want)
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Algorithm for Join Operation

• The most time consuming operation
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What you will learn about in this section

1. Nested Loop Join (NLJ)

2. Block Nested Loop Join (BNLJ)

3. Index Nested Loop Join (INLJ)

4. Sorted-Merge Join

5. Hash Join
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RECAP: Joins
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Joins: Example

Example: Returns all pairs of 
tuples r ∈ #, % ∈ &	such that 
(. *	 = 	%. *

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

! ⋈ # SELECT R.A,B,C,D
FROM R, S
WHERE  R.A = S.A
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Joins: Example

Example: Returns all pairs of 
tuples r ∈ #, % ∈ &	such that 
(. *	 = 	%. *

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

! ⋈ # SELECT R.A,B,C,D
FROM R, S
WHERE  R.A = S.A
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Semantically: A Subset of the Cross Product

SELECT R.A,B,C,D
FROM R, S
WHERE  R.A = S.A

Example: Returns all pairs of 
tuples r ∈ #, % ∈ &	such that 
(. *	 = 	%. *

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

×
Cross 
Produc
t

Filter by 
conditions
(r.A = s.A)

… Can we actually 
implement a 
join in this way?

! ⋈ #
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Notes

• We write ! ⋈ # to mean join R and S by returning all tuple pairs 
where all shared attributes are equal

• We write ! ⋈ # on A to mean join R and S by returning all tuple 
pairs where attribute(s) A are equal

• For simplicity, we’ll consider joins on two tables and with equality 
constraints (“equijoins”)

However joins can merge > 2 tables, 
and some algorithms do support 
non-equality constraints!
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Nested Loop Joins
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Notes

• We are again considering “IO aware” 
algorithms: care about disk IO

• Given a relation R, let:
– T(R) = # of tuples in R
– P(R) = # of pages in R

• Note also that we omit ceilings in 
calculations… good exercise to put back in!

Recall that we read / write 
entire pages with disk IO
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Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)
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Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)

1. Loop over the tuples in R

Note that our IO cost is 
based on the number of 
pages loaded, not the 
number of tuples!

Cost:
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Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S)

Have to read all of S from disk for every tuple in R!

1. Loop over the tuples in R

2. For every tuple in R, loop 
over all the tuples in S

Cost:
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Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S)

Note that NLJ can handle things other than equality 
constraints… just check in the if statement!

1. Loop over the tuples in R

2. For every tuple in R, loop 
over all the tuples in S

3. Check against join 
conditions

Cost:
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Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S) + OUT

1. Loop over the tuples in R

2. For every tuple in R, loop 
over all the tuples in S

3. Check against join conditions

4. Write out (to page, then 
when page full, to disk)

Cost:
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Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S) + OUT

What if R (“outer”) and S 
(“inner”) switched?

Cost:

P(S) + T(S)*P(R) + OUT

Outer vs. inner selection makes a huge difference-
DBMS needs to know which relation is smaller!
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Block Nested Loop Join (BNLJ)
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Block Nested Loop Join (BNLJ)

Compute R ⋈ #	%&	':
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

P(#)

Given B+1 pages of memory

1. Load in B-1 pages of R at a 
time (leaving 1 page each 
free for S & output)

Cost:

Note: There could be some 
speedup here due to the fact 
that we’re reading in multiple 
pages sequentially however 
we’ll ignore this here!
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Block Nested Loop Join (BNLJ)

Compute R ⋈ #	%&	':
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in 
ps:

if r[A] == s[A]:
yield (r,s)

P " +	 % "
& − 1%(*)

Given B+1 pages of memory

Note: Faster to iterate over 
the smaller relation first!

1. Load in B-1 pages of R at a 
time (leaving 1 page each 
free for S & output)

2. For each (B-1)-page segment 
of R, load each page of S

Cost:
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Block Nested Loop Join (BNLJ)

Compute R ⋈ #	%&	':
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in 
ps:

if r[A] == s[A]:
yield (r,s)

Given B+1 pages of memory

1. Load in B-1 pages of R at a 
time (leaving 1 page each 
free for S & output)

2. For each (B-1)-page segment 
of R, load each page of S

3. Check against the join 
conditions

BNLJ can also handle non-equality 
constraints

Cost:

P " +	 % "
& − 1%(*)
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Block Nested Loop Join (BNLJ)

Compute R ⋈ #	%&	':
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in 
ps:

if r[A] == s[A]:
yield (r,s)

P " +	! "
#$% %(') + OUT

Given B+1 pages of memory

1. Load in B-1 pages of R at a 
time (leaving 1 page each 
free for S & output)

2. For each (B-1)-page segment 
of R, load each page of S

3. Check against the join 
conditions

4. Write out

Cost:
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BNLJ vs. NLJ: Benefits of IO Aware

• In BNLJ, by loading larger chunks of R, we minimize the number of 
full disk reads of S
–We only read all of S from disk for every (B-1)-page segment of R!
– Still the full cross-product, but more done only in memory

P " +	! "
#$% %(') + OUTP(R) + T(R)*P(S) + OUT

NLJ BNLJ

BNLJ is faster by  roughly (#$%)((")!(")
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BNLJ vs. NLJ: Benefits of IO Aware

• Example:
– R: 500 pages
– S: 1000 pages
– 100 tuples / page
– We have 12 pages of memory (B = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= 140 hours

• BNLJ: Cost = 500 + !""∗$"""$" = 50 Thousand IOs ~= 0.14 hours

A very real difference from a small 
change in the algorithm!

Ignoring OUT 
here…
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Smarter than Cross-Products
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Smarter than Cross-Products: From Quadratic to Nearly Linear

• All joins that compute the full cross-product have some 
quadratic term
– For example we saw:

• Now we’ll see some (nearly) linear joins:
– ~ O(P(R) + P(S) + OUT), where again OUT could be quadratic but is 

usually better

P " +	! "
#$% %(') + OUT

P(R) + T(R)P(S) + OUTNLJ

BNLJ

We get this gain by taking advantage of structure- moving 
to equality constraints (“equijoin”) only!
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Index Nested Loop Join (INLJ)

Compute R ⋈ #	%&	':
Given index idx on 

S.A:  
for r in R:

s in idx(r[A]):
yield r,s

P(R) + T(R)*L + OUT

à We can use an index (e.g. B+ Tree) to avoid doing 
the full cross-product!

where L is the IO cost to 
access all the distinct values in 
the index; assuming these fit 
on one page, L	~	3 is good 
est. 

Cost:
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Sort-Merge Join (SMJ)
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What you will learn about in this section

1. Sort-Merge Join

2. “Backup” & Total Cost

3. Optimizations
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Sort Merge Join (SMJ): Basic Procedure

To compute R ⋈ #	%&	':

1. Sort R, S on A using external merge sort

2. Scan sorted files and “merge”

3. [May need to “backup”- see next subsection]

Note that if R, S are already sorted on A, 
SMJ will be awesome!

Note that we are only 
considering equality 
join conditions here
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SMJ Example: R ⋈ #	%&	'	with 3 page buffer

• For simplicity: Let each page be one tuple, and let the first value be 
A 

Dis
k Main Memory

Buffer
R (5,b

)
(3,j
)

(0,a
)

S (7,f
)

(0,j
)

(3,g
)

We show the 
file HEAD, 
which is the 
next value to 
be read!
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SMJ Example: R ⋈ #	%&	'	with 3 page buffer

1. Sort the relations R, S on the join key (first value)

Dis
k Main Memory

Buffer
R (5,b

)
(3,j
)

(0,a
)

S (7,f
)

(0,j
)

(3,g
)

(3,j
)

(5,b
)

(0,a
)

(3,g
)

(7,f
)

(0,j
)
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SMJ Example: R ⋈ #	%&	'	with 3 page buffer

2. Scan and “merge” on join key!

Dis
k Main Memory

Buffer
R

S (3,g
)

(7,f
)

(3,j
)

(5,b
)

Output

(0,j
)

(0,a
)

(0,a
)

(0,j
)
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SMJ Example: R ⋈ #	%&	'	with 3 page buffer

2. Scan and “merge” on join key!

Dis
k Main Memory

Buffer
R

S (3,g
)

(7,f
)

(3,j
)

(5,b
)

Output

(0,j
)

(0,a
)

(0,a
)

(0,j
) (0,a,j

)

CSC 261, Spring 2018, UR 



SMJ Example: R ⋈ #	%&	'	with 3 page buffer

2. Scan and “merge” on join key!

Dis
k Main Memory

Buffer
R

S (3,g
)

(7,f
)

(3,j
)

(5,b
)

Output

(0,a
)

(0,j
)

(0,a,j)

(3,j,g
)

(3,j
)

(3,g
)

(5,b
)

(7,f
)
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SMJ Example: R ⋈ #	%&	'	with 3 page buffer

2. Done!

Dis
k Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,a
)

(0,j
)

(0,a,j
)

(3,j
)

(3,g
)

(3,j,g
)

(5,b
)

(7,f
)
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What happens with duplicate join keys?
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Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j
)

(0,g
)

(0,b
)

(7,f
)

(0,a
)

(0,j
)

(0,a
)

(0,j
)
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Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j
)

(0,g
)

(0,b
)

(7,f
)

(0,a
)

(0,a
)

(0,j
) (0,j

)
(0,a,j

)

CSC 261, Spring 2018, UR 



Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main Memory

Buffer
R

S (0,g
)

7,f

(0,j
)

5,b

Output

(0,b
)

(7,f
)

(0,a
)

(0,a
)

(0,j
)

(0,a,j
)

(0,a,g
)

(0,g
)

(0,j
)
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Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main Memory

Buffer
R

S 0,g 7,f

0,j 5,b

Output

(0,j
)

(0,b
)

(7,f
)

(0,a
)

(0,a,j
)

(0,g
)

(0,a,g
)

(0,j
)

Have to “backup” in the scan of S 
and read tuple we’ve already read!

(0,j
)

(0,j
)
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Backup

• At best, no backup à scan takes P(R) + P(S) reads
– For ex: if no duplicate values in join attribute

• At worst (e.g. full backup each time), scan could take P(R) * P(S) 
reads!
– For ex: if all duplicate values in join attribute, i.e. all tuples in R and S have 

the same value for the join attribute
– Roughly: For each page of R, we’ll have to back up and read each page of 

S…

• Often not that bad however
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SMJ: Total cost

• Cost of SMJ is cost of sorting R and S…

• Plus the cost of scanning: ~P(R)+P(S)
– Because of backup: in worst case P(R)*P(S); but this would be very 

unlikely

• Plus the cost of writing out: ~P(R)+P(S) but in worst case T(R)*T(S)

~ Sort(P(R)) + Sort(P(S)) 
+ P(R) + P(S) + OUT
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SMJ vs. BNLJ

• If we have 100 buffer pages, P(R) = 1000 pages and P(S) = 500 
pages: 
– Sort both in two passes: 2 * 2 * 1000 + 2 * 2 * 500 = 6,000 IOs
–Merge phase 1000 + 500 = 1,500 IOs
– = 7,500 IOs + OUT

What is BNLJ?
– 500 + 1000* !""

#$ = 6,500 IOs + OUT

• But, if we have 35 buffer pages?
– Sort Merge has same behavior (still 2 passes)
– BNLJ? 15,500 IOs + OUT!
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Merge / Join 
Phase

Sort Phase
(Ext. Merge 
Sort)

Basic SMJ 

SR

Split & sortSplit & sort

Given B+1 buffer 
pages

Joined output 
file created!

Unsorted input relations

MergeMerge

MergeMerge
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Takeaway points from SMJ

If input already sorted on join key, skip the sorts.
– SMJ is basically linear.
– Nasty but unlikely case: Many duplicate join keys.
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4. HASH JOIN (HJ)

CSC 261, Spring 2018, UR 



What you will learn about in this section

1. Hash Join

2. Memory requirements
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Recall: Hashing

• Magic of hashing:
– A hash function hB maps into [0,B-1]
– And maps nearly uniformly

• A hash collision is when x != y but hB(x) = hB(y)
– Note however that it will never occur that x = y but hB(x) != hB(y)
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Hash Join: High-level procedure

To compute R ⋈ #	%&	':

1. Partition Phase: Using one (shared) hash function hB, partition R 
and S into B buckets

2. Matching Phase: Take pairs of buckets whose tuples have the 
same values for h, and join these
1. Use BNLJ here; or hash again à either way, operating on small 

partitions so fast!

Note again that we are only 
considering equality constraints here

We decompose the problem using hB, then 
complete the join
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Hash Join: High-level procedure

1. Partition Phase: Using one (shared) hash function hB, 
partition R and S into B buckets

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

More detail in 
a second…

(0,a)
(0,a)

(0,j)

(3,j)
(3,b)

(0,a)
(0,j)

(5,b)(5,b)

Note our new 
convention: 
pages each 
have two 
tuples (one per 
row)
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Hash Join: High-level procedure

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join 
matchin
g 
buckets

2. Matching Phase: Take pairs of buckets whose tuples have the same 
values for hB, and join these

(3,j)
(3,b)
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Hash Join: High-level procedure

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Don’t have 
to join the 
others!  
E.g. (S1 and 
R2)!

2. Matching Phase: Take pairs of buckets whose tuples have the same 
values for hB, and join these

(3,j)
(3,b)
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Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into buckets such that if 
hB(ti.A) = hB(tj.A) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:
–We use B buffer pages for output (one for each bucket), and 1 for input
• For each tuple t in input, copy to buffer page for hB(t.A)
• When page fills up, flush to disk.
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How big are the resulting buckets?

• Given N input pages, we partition into B buckets:
–à Ideally our buckets are each of size ~ N/B pages

Given B+1 buffer
pages
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How big do we want the resulting buckets?

• Ideally, our buckets would be of size ≤ "− $ pages
– 1 for input page, 1 for output page, B-1 for each bucket

• Recall: If we want to join a bucket from R and one from S, we 
can do BNLJ in linear time if for one of them (wlog say R),  
	&(() ≤ "− $!
– And more generally, being able to fit bucket in memory is 

advantageous

• We can keep partitioning buckets that are > B-1 pages, until 
they are ≤ "− $ pages
– Using a new hash key which will split them… We’ll call each of 

these a “pass” again…

Given B+1 buffer
pages

Recall	for	BNLJ:
P 0
+	2 0 2(4)

6 − 1
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Hash Join Phase 1: Partitioning

We partition into B = 2 buckets using hash function h2 so that we 
can have one buffer page for each partition (and one for input)

Dis
k

R

(3,j)
(0,j)

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

For simplicity, we’ll look at partitioning 
one of the two relations- we just do the 
same for the other relation!

Recall: our goal will be to get B = 2 
buckets of size <= B-1 à 1 page each

CSC 261, Spring 2018, UR 



Hash Join Phase 1: Partitioning

1. We read pages from R into the “input” page of the buffer…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)
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Hash Join Phase 1: Partitioning

2. Then we use hash function h2 to sort into the buckets, 
which each have one page in the buffer

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(3,a)

h2(0) = 0

(0,a)
(3,a)

(0,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)
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Main Memory

Buffer

Hash Join Phase 1: Partitioning

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(3,a)

h2(3) = 1

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

2. Then we use hash function h2 to sort into the buckets, which each 
have one page in the buffer
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Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)
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Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(3) = 1

(3,j)
(0,j)

(3,a)
(3,j)
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Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(0) = 0

(3,a)
(3,j)

(0,a)
(0,j)
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Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush 
to disk

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

B0

B1

(3,a)
(3,j)

(0,a)
(0,j)
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Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush 
to disk

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)
(0,j)
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Hash Join Phase 1: Partitioning

Note that collisions can occur!

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(5) = 1

Collision!!!

(5,a)
(0,j)

(5,a)

h2(5) = h2(3) = 1
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Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(0) = 0

(5,a)(0,j)
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Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)

(5,b)
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Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)(5,b)

h2(5) = 1

(5,a)
(5,b)

h2(5) = h2(3) = 1

Collision!!!
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Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j) (5,a)
(5,b)
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Hash Join Phase 1: Partitioning

Dis
k

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

We wanted buckets of size B-1 = 
1… however we got larger ones 
due to:

(1) Duplicate join 
keys

(2) Hash collisions
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Hash Join Phase 1: Partitioning

Dis
k

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

To take care of larger 
buckets caused by (2) hash 
collisions, we can just do 
another pass!
What hash function should 
we use?

Do another pass with a 
different hash function, h’2, 
ideally such that:

h’2(3) != h’2(5)
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Hash Join Phase 1: Partitioning

Dis
k

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

To take care of larger 
buckets caused by (2) hash 
collisions, we can just do 
another pass!
What hash function should 
we use?

Do another pass with a 
different hash function, h’2, 
ideally such that:

h’2(3) != h’2(5)
B2

(5,a)
(5,b)
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Hash Join Phase 1: Partitioning

Dis
k

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

What about duplicate join keys?  
Unfortunately this is a problem… 
but usually not a huge one.

B2
(5,a)
(5,b)

We call this unevenness 
in the bucket size skew
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Now that we have partitioned R and S…
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Hash Join Phase 2: Matching

• Now, we just join pairs of buckets from R and S that have the same 
hash value to complete the join!

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join 
matchin
g 
buckets

(3,j)
(3,b)
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Hash Join Phase 2: Matching

• Note that since x = y à h(x) = h(y), we only need to consider pairs of 
buckets (one from R, one from S) that have the same hash function 
value

• If our buckets are ~" − $ pages, can join each such pair using BNLJ in 
linear time; recall (with P(R) = B-1):

BNLJ Cost: P " +	! " !($)
&'( = &(") +	 (&'()!($)&'( = P(R) + P(S)

Joining the pairs of buckets is linear!  
(As long as smaller bucket <= B-1 pages)
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed 
values

R ⋈ #	%&	'	
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed 
values

R ⋈ #	%&	'	
To perform the join, we 
ideally just need to 
explore the dark blue 
regions 

= the tuples with same 
values of the join key A

A=1

A=2

A=3

A=4
A=5

A=6
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed 
values

R ⋈ #	%&	'	
With a join algorithm like 
BNLJ that doesn’t take 
advantage of equijoin 
structure, we’d have to 
explore this whole grid!
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed 
values

R ⋈ #	%&	'	
h(A)=0

h(A)=1

h(A)=2

With HJ, we only 
explore the blue 
regions

= the tuples with 
same values of h(A)!

We can apply BNLJ to 
each of these regions
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Hash Join Phase 2: Matching

R.A 
hashed 
values

S.A hashed 
values

R ⋈ #	%&	'	h'(A)=0

h'(A)
=2

An alternative to 
applying BNLJ:

We could also hash 
again, and keep 
doing passes in 
memory to reduce 
further!

h'(A)=1

h'(A
)=3 h'(A

)=4

h'(A)=5
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Hash Join Summary

– Partitioning requires reading + writing each page of R,S
• à 2(P(R)+P(S)) IOs

–Matching (with BNLJ) requires reading each page of R,S
• à P(R) + P(S) IOs

–Writing out results could be as bad as P(R)*P(S)… but probably closer 
to P(R)+P(S)

HJ takes ~3(P(R)+P(S)) + OUT IOs!
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