
CSC 261/461 – Database Systems
Lecture 19

Spring 2018

CSC 261, Spring 2018, UR

Sections to Study

CSC 261, Spring 2018, UR

External Merge Sort

CSC 261, Spring 2018, UR

Why are Sort Algorithms Important?

• Data requested from DB in sorted order is extremely
common
– e.g., find students in increasing GPA order

• Why not just use quicksort in main memory??
–What about if we need to sort 1TB of data with 1GB of RAM…

A classic problem in computer science!

CSC 261, Spring 2018, UR

So how do we sort big files?

1. Split into chunks small enough to sort in memory (“runs”)

2. Merge pairs (or groups) of runs using the external merge
algorithm

3. Keep merging the resulting runs (each time = a “pass”) until left
with one sorted file!

CSC 261, Spring 2018, UR

Before we proceed..

• Question: Assume each page/block can contain 100 records. You
have a file containing 80 unsorted records. What is the IO cost of
sorting this file.

CSC 261, Spring 2018, UR

A. 80 * log2 80 IO

B. 1 IO

C. 2 IO

D. log2 80 IO

Before we proceed..

• Question: Assume each page/block can contain 100 records. You
have a file containing 80 unsorted records. What is the IO cost of
sorting this file.

CSC 261, Spring 2018, UR

A. 80 * log2 80 IO

B. 1 IO

C. 2 IO

D. log2 80 IO

EXTERNAL MERGE & SORT

CSC 261, Spring 2018, UR

Challenge: Merging Big Files with Small Memory

How do we efficiently merge two sorted files when both are
much larger than our main memory buffer?

CSC 261, Spring 2018, UR

External Merge Algorithm

• Input: 2 sorted lists of length M and N

• Output: 1 sorted list of length M + N

• Required: At least 3 Buffer Pages

• IOs: 2(M+N)

CSC 261, Spring 2018, UR

Key (Simple) Idea

To find an element that is no larger than all elements in two lists,
one only needs to compare minimum elements from each list.

If:
!! ≤ !" ≤ ⋯ ≤ !#
$! ≤ $" ≤ ⋯ ≤ $$

Then:
%&'(!!, $!) ≤ !%
%&'(!!, $!) ≤ $&

for i=1….N and j=1….M

CSC 261, Spring 2018, UR

External Merge Algorithm

7,11 20,31

23,24 25,30

Input:
Two sorted
files

Output:
One merged
sorted file

Disk

Main Memory

Buffer
1,5

2,22

F1

F2

CSC 261, Spring 2018, UR

External Merge Algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

1,5 2,22
Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

CSC 261, Spring 2018, UR

External Merge Algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

5 22 1,2
Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

CSC 261, Spring 2018, UR

External Merge Algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

5 22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

CSC 261, Spring 2018, UR

External Merge Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

This is all the algorithm
“sees”… Which file to load a
page from next?

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

7,11

CSC 261, Spring 2018, UR

External Merge Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

We know that F2 only
contains values ≥ 22… so we
should load from F1!

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

7,11

CSC 261, Spring 2018, UR

External Merge Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
7,11

CSC 261, Spring 2018, UR

External Merge Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

5,722

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
11

CSC 261, Spring 2018, UR

External Merge Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

5,7

22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
11

CSC 261, Spring 2018, UR

External Merge Algorithm

23,24 25,30

Disk

Main Memory

Buffer

5,7

22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
11

20,31

And so on…

CSC 261, Spring 2018, UR

We can merge lists of arbitrary
length with only 3 buffer pages.

If lists of size M and N, then
Cost: 2(M+N) IOs

Each page is read once, written once

CSC 261, Spring 2018, UR

External Merge Sort Algorithm

27,24 3,1

Example:
• 3 Buffer

pages
• 6-page file

Disk Main Memory

Buffer

18,22

F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Orange file
= unsorted

CSC 261, Spring 2018, UR

EXTERNAL MERGE SORT (BEFORE
MERGE)

CSC 261, Spring 2018, UR

External Merge Sort Algorithm

27,24 3,1

Example:
• 3 Buffer

pages
• 6-page file

Disk Main Memory

Buffer

18,22

F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Orange file
= unsorted

CSC 261, Spring 2018, UR

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer

pages
• 6-page file

Orange file
= unsorted

CSC 261, Spring 2018, UR

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2
33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer

pages
• 6-page file

Orange file
= unsorted

CSC 261, Spring 2018, UR

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2
31,33 44,5510,12

Example:
• 3 Buffer

pages
• 6-page file

1. Split into chunks small enough to sort in memory

Orange file
= unsorted

CSC 261, Spring 2018, UR

External Merge Sort Algorithm

Disk Main Memory

Buffer
F1

F2

31,33 44,5510,12

And similarly for F2

27,24 3,118,22
18,22 24,271,3

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer

pages
• 6-page file
Each
sorted file
is a called
a run

CSC 261, Spring 2018, UR

External Merge Sort Algorithm

Disk Main Memory

Buffer
F1

F2

2. Now just run the external merge algorithm & we’re done!

31,33 44,5510,12

18,22 24,271,3

Example:
• 3 Buffer

pages
• 6-page file

CSC 261, Spring 2018, UR

Calculating IO Cost

For 3 buffer pages, 6 page file:

1. Split into two 3-page files and sort in memory
1. = 1 R + 1 W for each file = 2*(3 + 3) = 12 IO operations

2. Merge each pair of sorted chunks using the external merge
algorithm
1. = 2*(3 + 3) = 12 IO operations

(if this explanation makes more sense: Reading contents of all pages only once
writing them only once --- so, 6 + 6 = 12 IO)

3. Total cost = 24 IO

CSC 261, Spring 2018, UR

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

CSC 261, Spring 2018, UR

CSC 261, Spring 2018, UR

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

1. Split into files small enough to
sort in buffer…

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

CSC 261, Spring 2018, UR

CSC 261, Spring 2018, UR

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

1. Split into files small enough to
sort in buffer… and sort

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Call each of these
sorted files a run

CSC 261, Spring 2018, UR

CSC 261, Spring 2018, UR

From

CSC 261, Spring 2018, UR

To

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

2. Now merge
pairs of (sorted)
files… the
resulting files
will be sorted!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

CSC 261, Spring 2018, UR

CSC 261, Spring 2018, UR

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

3. And repeat…

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Call each of these
steps a pass

CSC 261, Spring 2018, UR

CSC 261, Spring 2018, UR

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

4. And repeat!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Disk

3,10 10,101,3

12,16 18,1812,12

20,22 22,2318,18

24,24 27,2723,24

31,31 31,3327,31

33,38 39,4033,33

43,44 44,4541,42

48,55 55,5546,47

CSC 261, Spring 2018, UR

CSC 261, Spring 2018, UR

Simplified 3-page Buffer Version

Assume for simplicity that we split an N-page file into N single-
page runs and sort these; then:

• First pass: Merge N/2 pairs of runs each of length 1 page

• Second pass: Merge N/4 pairs of runs each of length 2 pages

• In general, for N pages, we do !"#!$ passes
– +1 for the initial split & sort

• Each pass involves reading in & writing out all the pages = 2N
IO

Unsorted input file

Split & sort

Merge

Merge

Sorted!

à 2N*(!"#!$ +1) total IO cost!

CSC 261, Spring 2018, UR

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

1. Increase length of initial runs. Sort B+1 at a time!
At the beginning, we can split the N pages into runs of length B+1 and
sort these in memory

2"(log!" + 1)

IO Cost:

Starting with runs
of length 1

2"(log!
*

++ , + 1)

Starting with runs of
length B+1

CSC 261, Spring 2018, UR

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

2. Perform a B-way merge.
On each pass, we can merge groups of B runs at a time (vs. merging
pairs of runs)!
IO Cost:

2"(log!" + 1) 2"(log!
*

++ , + 1)

Starting with runs
of length 1

Starting with runs of
length B+1

2"(log"
*

++ , + 1)

Performing B-way
merges

CSC 261, Spring 2018, UR

What Next!

• Query Processing (Chapter 18)
• Query Optimization (Chapter 19)

CSC 261, Spring 2018, UR

QUERY PROCESSING

CSC 261, Spring 2018, UR

Steps in Query Processing

• Scanning
• Parsing
• Validation
• Query Tree Creation
• Query Optimization (Query planning)
• Code generation (to execute the plan)
• Running the query code

CSC 261, Spring 2018, UR

Steps in Query Processing

CSC 261, Spring 2018, UR

SQL Queries

• SQL Queries are decomposed into Query blocks:
– Select…From…Where…Group By…Having

• Translate Query blocks into Relational Algebraic expression

• Remember, SQL includes aggregate operators:
–MIN, MAX, SUM, COUNT etc.
– Part of the extended algebra
– Let’s go back to Chapter 8 (Section 8.4.2)

CSC 261, Spring 2018, UR

Aggregate Functions and Grouping (Relational Algebra)

• Aggregate function: ℑ

• < "#$%&'("	*++#',%+-. > ℑ < 0%(1+'$(2'.+ > (R)

CSC 261, Spring 2018, UR

Dno ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE).

Semijoin (⋉)

• R ⋉ S = P A1,…,An (R ⋈ S)
• Where A1, …, An are the

attributes in R
• Example:
– Employee ⋉	Dependents

SELECT DISTINCT
sid,sname,gpa

FROM
Students,People

WHERE
sname = pname;

SQL:

RA:
"#$%&'#(⋉)&*+,&

Students(sid,sname,gpa)
People(ssn,pname,address)

SELECT DISTINCT
sid,sname,gpa

FROM
Students

WHERE
sname IN

(SELECT pname FROM People);

OR

CSC 261, Spring 2018, UR

Algorithm for External Sorting

• We have already covered

CSC 261, Spring 2018, UR

Algorithm fro Select Operation

• Read Section 18.3 (18.3.1 , 18.3.2, 18.3.3, 18.3.4)
• Mostly covers searching:

• 1. Linear Search
• 2. Binary Search
• 3. Indexing
• 4. Hashing
• 5. B+ Tree

• (Skip bitmap index and functional index if you want)

CSC 261, Spring 2018, UR

Algorithm for Join Operation

• The most time consuming operation

CSC 261, Spring 2018, UR

What you will learn about in this section

1. Nested Loop Join (NLJ)

2. Block Nested Loop Join (BNLJ)

3. Index Nested Loop Join (INLJ)

4. Sorted-Merge Join

5. Hash Join

CSC 261, Spring 2018, UR

RECAP: Joins

CSC 261, Spring 2018, UR

Joins: Example

Example: Returns all pairs of
tuples r ∈ #, % ∈ &	such that
(. *	 = 	%. *

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

! ⋈ # SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

CSC 261, Spring 2018, UR

Joins: Example

Example: Returns all pairs of
tuples r ∈ #, % ∈ &	such that
(. *	 = 	%. *

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

! ⋈ # SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

CSC 261, Spring 2018, UR

Joins: Example

Example: Returns all pairs of
tuples r ∈ #, % ∈ &	such that
(. *	 = 	%. *

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

! ⋈ # SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

CSC 261, Spring 2018, UR

Joins: Example

Example: Returns all pairs of
tuples r ∈ #, % ∈ &	such that
(. *	 = 	%. *

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

! ⋈ # SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

CSC 261, Spring 2018, UR

Joins: Example

Example: Returns all pairs of
tuples r ∈ #, % ∈ &	such that
(. *	 = 	%. *

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

! ⋈ # SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

CSC 261, Spring 2018, UR

Semantically: A Subset of the Cross Product

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns all pairs of
tuples r ∈ #, % ∈ &	such that
(. *	 = 	%. *

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

×
Cross
Produc
t

Filter by
conditions
(r.A = s.A)

… Can we actually
implement a
join in this way?

! ⋈ #

CSC 261, Spring 2018, UR

Notes

• We write ! ⋈ # to mean join R and S by returning all tuple pairs
where all shared attributes are equal

• We write ! ⋈ # on A to mean join R and S by returning all tuple
pairs where attribute(s) A are equal

• For simplicity, we’ll consider joins on two tables and with equality
constraints (“equijoins”)

However joins can merge > 2 tables,
and some algorithms do support
non-equality constraints!

CSC 261, Spring 2018, UR

Nested Loop Joins

CSC 261, Spring 2018, UR

Notes

• We are again considering “IO aware”
algorithms: care about disk IO

• Given a relation R, let:
– T(R) = # of tuples in R
– P(R) = # of pages in R

• Note also that we omit ceilings in
calculations… good exercise to put back in!

Recall that we read / write
entire pages with disk IO

CSC 261, Spring 2018, UR

Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

CSC 261, Spring 2018, UR

Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R)

1. Loop over the tuples in R

Note that our IO cost is
based on the number of
pages loaded, not the
number of tuples!

Cost:

CSC 261, Spring 2018, UR

Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S)

Have to read all of S from disk for every tuple in R!

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

Cost:

CSC 261, Spring 2018, UR

Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S)

Note that NLJ can handle things other than equality
constraints… just check in the if statement!

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

3. Check against join
conditions

Cost:

CSC 261, Spring 2018, UR

Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S) + OUT

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

3. Check against join conditions

4. Write out (to page, then
when page full, to disk)

Cost:

CSC 261, Spring 2018, UR

Nested Loop Join (NLJ)

Compute R ⋈ #	%&	':
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

P(R) + T(R)*P(S) + OUT

What if R (“outer”) and S
(“inner”) switched?

Cost:

P(S) + T(S)*P(R) + OUT

Outer vs. inner selection makes a huge difference-
DBMS needs to know which relation is smaller!

CSC 261, Spring 2018, UR

Block Nested Loop Join (BNLJ)

CSC 261, Spring 2018, UR

Block Nested Loop Join (BNLJ)

Compute R ⋈ #	%&	':
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

P(#)

Given B+1 pages of memory

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

Cost:

Note: There could be some
speedup here due to the fact
that we’re reading in multiple
pages sequentially however
we’ll ignore this here!

CSC 261, Spring 2018, UR

Block Nested Loop Join (BNLJ)

Compute R ⋈ #	%&	':
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in
ps:

if r[A] == s[A]:
yield (r,s)

P " +	 % "
& − 1%(*)

Given B+1 pages of memory

Note: Faster to iterate over
the smaller relation first!

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

2. For each (B-1)-page segment
of R, load each page of S

Cost:

CSC 261, Spring 2018, UR

Block Nested Loop Join (BNLJ)

Compute R ⋈ #	%&	':
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in
ps:

if r[A] == s[A]:
yield (r,s)

Given B+1 pages of memory

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

2. For each (B-1)-page segment
of R, load each page of S

3. Check against the join
conditions

BNLJ can also handle non-equality
constraints

Cost:

P " +	 % "
& − 1%(*)

CSC 261, Spring 2018, UR

Block Nested Loop Join (BNLJ)

Compute R ⋈ #	%&	':
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in
ps:

if r[A] == s[A]:
yield (r,s)

P " +	! "
#$% %(') + OUT

Given B+1 pages of memory

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

2. For each (B-1)-page segment
of R, load each page of S

3. Check against the join
conditions

4. Write out

Cost:

CSC 261, Spring 2018, UR

BNLJ vs. NLJ: Benefits of IO Aware

• In BNLJ, by loading larger chunks of R, we minimize the number of
full disk reads of S
–We only read all of S from disk for every (B-1)-page segment of R!
– Still the full cross-product, but more done only in memory

P " +	! "
#$% %(') + OUTP(R) + T(R)*P(S) + OUT

NLJ BNLJ

BNLJ is faster by roughly (#$%)((")!(")

CSC 261, Spring 2018, UR

BNLJ vs. NLJ: Benefits of IO Aware

• Example:
– R: 500 pages
– S: 1000 pages
– 100 tuples / page
– We have 12 pages of memory (B = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= 140 hours

• BNLJ: Cost = 500 + !""∗$"""$" = 50 Thousand IOs ~= 0.14 hours

A very real difference from a small
change in the algorithm!

Ignoring OUT
here…

CSC 261, Spring 2018, UR

Smarter than Cross-Products

CSC 261, Spring 2018, UR

Smarter than Cross-Products: From Quadratic to Nearly Linear

• All joins that compute the full cross-product have some
quadratic term
– For example we saw:

• Now we’ll see some (nearly) linear joins:
– ~ O(P(R) + P(S) + OUT), where again OUT could be quadratic but is

usually better

P " +	! "
#$% %(') + OUT

P(R) + T(R)P(S) + OUTNLJ

BNLJ

We get this gain by taking advantage of structure- moving
to equality constraints (“equijoin”) only!

CSC 261, Spring 2018, UR

Index Nested Loop Join (INLJ)

Compute R ⋈ #	%&	':
Given index idx on

S.A:
for r in R:

s in idx(r[A]):
yield r,s

P(R) + T(R)*L + OUT

à We can use an index (e.g. B+ Tree) to avoid doing
the full cross-product!

where L is the IO cost to
access all the distinct values in
the index; assuming these fit
on one page, L	~	3 is good
est.

Cost:

CSC 261, Spring 2018, UR

Sort-Merge Join (SMJ)

CSC 261, Spring 2018, UR

What you will learn about in this section

1. Sort-Merge Join

2. “Backup” & Total Cost

3. Optimizations

CSC 261, Spring 2018, UR

Sort Merge Join (SMJ): Basic Procedure

To compute R ⋈ #	%&	':

1. Sort R, S on A using external merge sort

2. Scan sorted files and “merge”

3. [May need to “backup”- see next subsection]

Note that if R, S are already sorted on A,
SMJ will be awesome!

Note that we are only
considering equality
join conditions here

CSC 261, Spring 2018, UR

SMJ Example: R ⋈ #	%&	'	with 3 page buffer

• For simplicity: Let each page be one tuple, and let the first value be
A

Dis
k Main Memory

Buffer
R (5,b

)
(3,j
)

(0,a
)

S (7,f
)

(0,j
)

(3,g
)

We show the
file HEAD,
which is the
next value to
be read!

CSC 261, Spring 2018, UR

SMJ Example: R ⋈ #	%&	'	with 3 page buffer

1. Sort the relations R, S on the join key (first value)

Dis
k Main Memory

Buffer
R (5,b

)
(3,j
)

(0,a
)

S (7,f
)

(0,j
)

(3,g
)

(3,j
)

(5,b
)

(0,a
)

(3,g
)

(7,f
)

(0,j
)

CSC 261, Spring 2018, UR

SMJ Example: R ⋈ #	%&	'	with 3 page buffer

2. Scan and “merge” on join key!

Dis
k Main Memory

Buffer
R

S (3,g
)

(7,f
)

(3,j
)

(5,b
)

Output

(0,j
)

(0,a
)

(0,a
)

(0,j
)

CSC 261, Spring 2018, UR

SMJ Example: R ⋈ #	%&	'	with 3 page buffer

2. Scan and “merge” on join key!

Dis
k Main Memory

Buffer
R

S (3,g
)

(7,f
)

(3,j
)

(5,b
)

Output

(0,j
)

(0,a
)

(0,a
)

(0,j
) (0,a,j

)

CSC 261, Spring 2018, UR

SMJ Example: R ⋈ #	%&	'	with 3 page buffer

2. Scan and “merge” on join key!

Dis
k Main Memory

Buffer
R

S (3,g
)

(7,f
)

(3,j
)

(5,b
)

Output

(0,a
)

(0,j
)

(0,a,j)

(3,j,g
)

(3,j
)

(3,g
)

(5,b
)

(7,f
)

CSC 261, Spring 2018, UR

SMJ Example: R ⋈ #	%&	'	with 3 page buffer

2. Done!

Dis
k Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,a
)

(0,j
)

(0,a,j
)

(3,j
)

(3,g
)

(3,j,g
)

(5,b
)

(7,f
)

CSC 261, Spring 2018, UR

What happens with duplicate join keys?

CSC 261, Spring 2018, UR

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j
)

(0,g
)

(0,b
)

(7,f
)

(0,a
)

(0,j
)

(0,a
)

(0,j
)

CSC 261, Spring 2018, UR

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j
)

(0,g
)

(0,b
)

(7,f
)

(0,a
)

(0,a
)

(0,j
) (0,j

)
(0,a,j

)

CSC 261, Spring 2018, UR

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main Memory

Buffer
R

S (0,g
)

7,f

(0,j
)

5,b

Output

(0,b
)

(7,f
)

(0,a
)

(0,a
)

(0,j
)

(0,a,j
)

(0,a,g
)

(0,g
)

(0,j
)

CSC 261, Spring 2018, UR

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Dis
k Main Memory

Buffer
R

S 0,g 7,f

0,j 5,b

Output

(0,j
)

(0,b
)

(7,f
)

(0,a
)

(0,a,j
)

(0,g
)

(0,a,g
)

(0,j
)

Have to “backup” in the scan of S
and read tuple we’ve already read!

(0,j
)

(0,j
)

CSC 261, Spring 2018, UR

Backup

• At best, no backup à scan takes P(R) + P(S) reads
– For ex: if no duplicate values in join attribute

• At worst (e.g. full backup each time), scan could take P(R) * P(S)
reads!
– For ex: if all duplicate values in join attribute, i.e. all tuples in R and S have

the same value for the join attribute
– Roughly: For each page of R, we’ll have to back up and read each page of

S…

• Often not that bad however

CSC 261, Spring 2018, UR

SMJ: Total cost

• Cost of SMJ is cost of sorting R and S…

• Plus the cost of scanning: ~P(R)+P(S)
– Because of backup: in worst case P(R)*P(S); but this would be very

unlikely

• Plus the cost of writing out: ~P(R)+P(S) but in worst case T(R)*T(S)

~ Sort(P(R)) + Sort(P(S))
+ P(R) + P(S) + OUT

CSC 261, Spring 2018, UR

SMJ vs. BNLJ

• If we have 100 buffer pages, P(R) = 1000 pages and P(S) = 500
pages:
– Sort both in two passes: 2 * 2 * 1000 + 2 * 2 * 500 = 6,000 IOs
–Merge phase 1000 + 500 = 1,500 IOs
– = 7,500 IOs + OUT

What is BNLJ?
– 500 + 1000* !""

#$ = 6,500 IOs + OUT

• But, if we have 35 buffer pages?
– Sort Merge has same behavior (still 2 passes)
– BNLJ? 15,500 IOs + OUT!

CSC 261, Spring 2018, UR

Merge / Join
Phase

Sort Phase
(Ext. Merge
Sort)

Basic SMJ

SR

Split & sortSplit & sort

Given B+1 buffer
pages

Joined output
file created!

Unsorted input relations

MergeMerge

MergeMerge

CSC 261, Spring 2018, UR

Takeaway points from SMJ

If input already sorted on join key, skip the sorts.
– SMJ is basically linear.
– Nasty but unlikely case: Many duplicate join keys.

CSC 261, Spring 2018, UR

4. HASH JOIN (HJ)

CSC 261, Spring 2018, UR

What you will learn about in this section

1. Hash Join

2. Memory requirements

CSC 261, Spring 2018, UR

Recall: Hashing

• Magic of hashing:
– A hash function hB maps into [0,B-1]
– And maps nearly uniformly

• A hash collision is when x != y but hB(x) = hB(y)
– Note however that it will never occur that x = y but hB(x) != hB(y)

CSC 261, Spring 2018, UR

Hash Join: High-level procedure

To compute R ⋈ #	%&	':

1. Partition Phase: Using one (shared) hash function hB, partition R
and S into B buckets

2. Matching Phase: Take pairs of buckets whose tuples have the
same values for h, and join these
1. Use BNLJ here; or hash again à either way, operating on small

partitions so fast!

Note again that we are only
considering equality constraints here

We decompose the problem using hB, then
complete the join

CSC 261, Spring 2018, UR

Hash Join: High-level procedure

1. Partition Phase: Using one (shared) hash function hB,
partition R and S into B buckets

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

More detail in
a second…

(0,a)
(0,a)

(0,j)

(3,j)
(3,b)

(0,a)
(0,j)

(5,b)(5,b)

Note our new
convention:
pages each
have two
tuples (one per
row)

CSC 261, Spring 2018, UR

Hash Join: High-level procedure

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join
matchin
g
buckets

2. Matching Phase: Take pairs of buckets whose tuples have the same
values for hB, and join these

(3,j)
(3,b)

CSC 261, Spring 2018, UR

Hash Join: High-level procedure

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Don’t have
to join the
others!
E.g. (S1 and
R2)!

2. Matching Phase: Take pairs of buckets whose tuples have the same
values for hB, and join these

(3,j)
(3,b)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into buckets such that if
hB(ti.A) = hB(tj.A) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:
–We use B buffer pages for output (one for each bucket), and 1 for input
• For each tuple t in input, copy to buffer page for hB(t.A)
• When page fills up, flush to disk.

CSC 261, Spring 2018, UR

How big are the resulting buckets?

• Given N input pages, we partition into B buckets:
–à Ideally our buckets are each of size ~ N/B pages

Given B+1 buffer
pages

CSC 261, Spring 2018, UR

How big do we want the resulting buckets?

• Ideally, our buckets would be of size ≤ "− $ pages
– 1 for input page, 1 for output page, B-1 for each bucket

• Recall: If we want to join a bucket from R and one from S, we
can do BNLJ in linear time if for one of them (wlog say R),
	&(() ≤ "− $!
– And more generally, being able to fit bucket in memory is

advantageous

• We can keep partitioning buckets that are > B-1 pages, until
they are ≤ "− $ pages
– Using a new hash key which will split them… We’ll call each of

these a “pass” again…

Given B+1 buffer
pages

Recall	for	BNLJ:
P 0
+	2 0 2(4)

6 − 1

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

We partition into B = 2 buckets using hash function h2 so that we
can have one buffer page for each partition (and one for input)

Dis
k

R

(3,j)
(0,j)

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

For simplicity, we’ll look at partitioning
one of the two relations- we just do the
same for the other relation!

Recall: our goal will be to get B = 2
buckets of size <= B-1 à 1 page each

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

1. We read pages from R into the “input” page of the buffer…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

2. Then we use hash function h2 to sort into the buckets,
which each have one page in the buffer

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(3,a)

h2(0) = 0

(0,a)
(3,a)

(0,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

CSC 261, Spring 2018, UR

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(3,a)

h2(3) = 1

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

2. Then we use hash function h2 to sort into the buckets, which each
have one page in the buffer

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(3) = 1

(3,j)
(0,j)

(3,a)
(3,j)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(0) = 0

(3,a)
(3,j)

(0,a)
(0,j)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush
to disk

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

B0

B1

(3,a)
(3,j)

(0,a)
(0,j)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush
to disk

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)
(0,j)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

Note that collisions can occur!

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(5) = 1

Collision!!!

(5,a)
(0,j)

(5,a)

h2(5) = h2(3) = 1

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(0) = 0

(5,a)(0,j)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)

(5,b)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)(5,b)

h2(5) = 1

(5,a)
(5,b)

h2(5) = h2(3) = 1

Collision!!!

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Dis
k

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j) (5,a)
(5,b)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

Dis
k

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

We wanted buckets of size B-1 =
1… however we got larger ones
due to:

(1) Duplicate join
keys

(2) Hash collisions

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

Dis
k

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

To take care of larger
buckets caused by (2) hash
collisions, we can just do
another pass!
What hash function should
we use?

Do another pass with a
different hash function, h’2,
ideally such that:

h’2(3) != h’2(5)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

Dis
k

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

To take care of larger
buckets caused by (2) hash
collisions, we can just do
another pass!
What hash function should
we use?

Do another pass with a
different hash function, h’2,
ideally such that:

h’2(3) != h’2(5)
B2

(5,a)
(5,b)

CSC 261, Spring 2018, UR

Hash Join Phase 1: Partitioning

Dis
k

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

What about duplicate join keys?
Unfortunately this is a problem…
but usually not a huge one.

B2
(5,a)
(5,b)

We call this unevenness
in the bucket size skew

CSC 261, Spring 2018, UR

Now that we have partitioned R and S…

CSC 261, Spring 2018, UR

Hash Join Phase 2: Matching

• Now, we just join pairs of buckets from R and S that have the same
hash value to complete the join!

Dis
k

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Dis
k

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join
matchin
g
buckets

(3,j)
(3,b)

CSC 261, Spring 2018, UR

Hash Join Phase 2: Matching

• Note that since x = y à h(x) = h(y), we only need to consider pairs of
buckets (one from R, one from S) that have the same hash function
value

• If our buckets are ~" − $ pages, can join each such pair using BNLJ in
linear time; recall (with P(R) = B-1):

BNLJ Cost: P " +	! " !($)
&'(= &(") +	 (&'()!($)&'(= P(R) + P(S)

Joining the pairs of buckets is linear!
(As long as smaller bucket <= B-1 pages)

CSC 261, Spring 2018, UR

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed
values

R ⋈ #	%&	'	

CSC 261, Spring 2018, UR

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed
values

R ⋈ #	%&	'	
To perform the join, we
ideally just need to
explore the dark blue
regions

= the tuples with same
values of the join key A

A=1

A=2

A=3

A=4
A=5

A=6

CSC 261, Spring 2018, UR

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed
values

R ⋈ #	%&	'	
With a join algorithm like
BNLJ that doesn’t take
advantage of equijoin
structure, we’d have to
explore this whole grid!

CSC 261, Spring 2018, UR

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed
values

R ⋈ #	%&	'	
h(A)=0

h(A)=1

h(A)=2

With HJ, we only
explore the blue
regions

= the tuples with
same values of h(A)!

We can apply BNLJ to
each of these regions

CSC 261, Spring 2018, UR

Hash Join Phase 2: Matching

R.A
hashed
values

S.A hashed
values

R ⋈ #	%&	'	h'(A)=0

h'(A)
=2

An alternative to
applying BNLJ:

We could also hash
again, and keep
doing passes in
memory to reduce
further!

h'(A)=1

h'(A
)=3 h'(A

)=4

h'(A)=5

CSC 261, Spring 2018, UR

Hash Join Summary

– Partitioning requires reading + writing each page of R,S
• à 2(P(R)+P(S)) IOs

–Matching (with BNLJ) requires reading each page of R,S
• à P(R) + P(S) IOs

–Writing out results could be as bad as P(R)*P(S)… but probably closer
to P(R)+P(S)

HJ takes ~3(P(R)+P(S)) + OUT IOs!

CSC 261, Spring 2018, UR

