
CSC 261/461 – Database Systems
Lecture 21

Spring 2018

CSC 261, Spring 2018

Announcement

• MongoDb on Bluehive:
• http://www.cs.rochester.edu/courses/261/spring2018/projects/pr

oj3/mongodb-tutorial.html
• https://info.circ.rochester.edu/BlueHive/Software/Data_Analysis/

mongodb.html

• Use the same password you use for blackboard
• Duo-authentication:
– https://tech.rochester.edu/services/two-factor-authentication/

CSC 261, Spring 2018

4. HASH JOIN (HJ)

CSC 261, Spring 2018

Recall: Hashing

• Magic of hashing:
–A hash function hB maps into [0,B-1]
–And maps nearly uniformly

• A hash collision is when
• x != y but hB(x) = hB(y)

Note however that it will
never occur that
x = y but hB(x) != hB(y)

CSC 261, Spring 2018

Hash Join: High-level procedure

To compute R ⋈ #	%&	':

1. Partition Phase: Using one (shared) hash function hB, partition R
and S into B buckets

2. Matching Phase: Take pairs of buckets whose tuples have the
same values for h, and join these
1. Use BNLJ here; or hash again à either way, operating on small

partitions so fast!

Note again that we are only
considering equality constraints here

Idea: We decompose the problem using hB,
then complete the join

CSC 261, Spring 2018

Hash Join: High-level procedure

1. Partition Phase: Using one (shared) hash function hB,
partition R and S into B buckets

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

More detail in
a second…

(0,a)
(0,a)

(0,j)

(3,j)
(3,b)

(0,a)
(0,j)

(5,b)(5,b)

Note our new
convention:
pages each
have two
tuples (one per
row)

CSC 261, Spring 2018
Two buckets for each file: Even and Odd

Hash Join: High-level procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join
matching
buckets

2. Matching Phase: Take pairs of buckets whose tuples have the same
values for hB, and join these

(3,j)
(3,b)

CSC 261, Spring 2018

Hash Join: High-level procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Don’t have
to join the
others!
E.g.
(S1 and R2)!

2. Matching Phase: Take pairs of buckets whose tuples have the same
values for hB, and join these

(3,j)
(3,b)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into buckets such that if
hB(ti.A) = hB(tj.A) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:
–We use B buffer pages for output (one for each

bucket), and 1 for input
• For each tuple t in input, copy to buffer page for hB(t.A)
•When page fills up, flush to disk.

For a Relation, Two tuples/records with the
same A attribute must be in the same
bucket

CSC 261, Spring 2018

How big are the resulting buckets?

• Given N input pages, we partition into B buckets:
–à Ideally our buckets are each of size ~ N/B pages

Given B+1 buffer
pages

CSC 261, Spring 2018

How big do we want the resulting buckets?

• Ideally, our buckets would be of size ≤ "− $ pages
– 1 for input page, 1 for output page, B-1 for each bucket

• Recall: If we want to join a bucket from R and one from
S, we can do BNLJ in linear time if for one of them
(wlog say R), 	&(() ≤ "− $!
– And more generally, being able to fit bucket in memory is

advantageous

• We can keep partitioning buckets that are > B-1 pages,
until they are ≤ "− $ pages
– Using a new hash key which will split them…

We’ll call each of
these a “pass” again…

Given B+1 buffer
pages

Recall	for	BNLJ:
P 0 +	2 0 2(4)

6 − 1

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

We partition into B = 2 buckets using hash function h2 so that we
can have one buffer page for each partition (and one for input)

Disk

Given B+1 = 3 buffer pages

R

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

For simplicity, we’ll look at partitioning
one of the two relations- we just do the
same for the other relation!

Recall: our goal will be to get B = 2
buckets of size <= B-1 à 1 page each

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

1. We read pages from R into the “input” page of the buffer…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

2. Then we use hash function h2 to sort into the buckets,
which each have one page in the buffer

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,a)

h2(0) = 0

(0,a)
(3,a)

(0,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

CSC 261, Spring 2018

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,a)

h2(3) = 1

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

2. Then we use hash function h2 to sort into the buckets, which each
have one page in the buffer

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(3) = 1

(3,j)
(0,j)

(3,a)
(3,j)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(0) = 0

(3,a)
(3,j)

(0,a)
(0,j)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush
to disk

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

B0

B1

(3,a)
(3,j)

(0,a)
(0,j)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush
to disk

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)
(0,j)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

Note that collisions can occur!

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(5) = 1

Collision!!!

(5,a)
(0,j)

(5,a)

h2(5) = h2(3) = 1

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(0) = 0

(5,a)(0,j)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)

(5,b)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)(5,b)

h2(5) = 1

(5,a)
(5,b)

h2(5) = h2(3) = 1

Collision!!!

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j) (5,a)
(5,b)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

We wanted buckets of size B-1 = 1…
however we got larger ones due to:

(1) Duplicate join
keys

(2) Hash collisions

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

To take care of larger
buckets caused by (2) hash
collisions, we can just do
another pass!

What hash function should
we use?

Do another pass with a
different hash function, h’2,
ideally such that:

h’2(3) != h’2(5)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

To take care of larger
buckets caused by (2) hash
collisions, we can just do
another pass!
What hash function should
we use?

Do another pass with a
different hash function, h’2,
ideally such that:

h’2(3) != h’2(5)
B2

(5,a)
(5,b)

CSC 261, Spring 2018

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

What about duplicate join keys?
Unfortunately this is a problem…
but usually not a huge one.

B2
(5,a)
(5,b)

We call this unevenness
in the bucket size skew

CSC 261, Spring 2018

Now that we have partitioned R and S…

CSC 261, Spring 2018

Hash Join Phase 2: Matching

• Now, we just join pairs of buckets from R and S that have the same
hash value to complete the join!

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join
matching
buckets

(3,j)
(3,b)

CSC 261, Spring 2018

Hash Join Phase 2: Matching

• Note that since x = y à h(x) = h(y), we only need to consider pairs of
buckets (one from R, one from S) that have the same hash function
value

• If our buckets are ~" − $ pages, can join each such pair using BNLJ in
linear time; recall (with P(R) = B-1):

BNLJ Cost: P " +	! " !($)
&'(= &(") +	 (&'()!($)&'(= P(R) + P(S)

Joining the pairs of buckets is linear!
(As long as smaller bucket <= B-1 pages)

CSC 261, Spring 2018

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed
values

R ⋈ #	%&	'	

CSC 261, Spring 2018

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed
values

R ⋈ #	%&	'	
To perform the join, we
ideally just need to
explore the dark blue
regions

= the tuples with same
values of the join key A

A=1

A=2

A=3

A=4
A=5

A=6

CSC 261, Spring 2018

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed
values

R ⋈ #	%&	'	
With a join algorithm like
BNLJ that doesn’t take
advantage of equijoin
structure, we’d have to
explore this whole grid!

CSC 261, Spring 2018

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed
values

R ⋈ #	%&	'	
h(A)=0

h(A)=1

h(A)=2

With HJ, we only
explore the blue
regions

= the tuples with
same values of h(A)!

We can apply BNLJ to
each of these regions

CSC 261, Spring 2018

Hash Join Phase 2: Matching

R.A
hashed
values

S.A hashed
values

R ⋈ #	%&	'	h'(A)=0

h'(A)
=2

An alternative to
applying BNLJ:

We could also hash
again, and keep
doing passes in
memory to reduce
further!

h'(A)=1

h'(A)=
3 h'(A)=

4

h'(A)=5

CSC 261, Spring 2018

Hash Join Summary

– Partitioning requires reading + writing each page of R,S
• à 2(P(R)+P(S)) IOs

–Matching (with BNLJ) requires reading each page of R,S
• à P(R) + P(S) IOs

–Writing out results could be as bad as P(R)*P(S)… but probably closer
to P(R)+P(S)

HJ takes ~3(P(R)+P(S)) + OUT IOs!

CSC 261, Spring 2018

Sort-Merge vs. Hash Join

• Given enough memory, both SMJ and HJ have
performance:

~3(P(R)+P(S)) + OUT

CSC 261, Spring 2018

Further Comparisons of Hash and Sort Joins

• Hash Joins are highly parallelizable.

• Sort-Merge less sensitive to data skew and result is
sorted

CSC 261, Spring 2018

Summary

• Saw IO-aware join algorithms
–Massive differences in performance.

CSC 261, Spring 2018

Topics for Today

• Query Optimization (Chapter 19)

CSC 261, Spring 2018

We will cover

1. Logical Optimization

2. Physical Optimization

CSC 261, Spring 2018

Logical vs. Physical Optimization

• Logical optimization:
– Find equivalent plans that are more efficient
– Intuition: Minimize # of tuples at each step by

changing the order of RA operators

• Physical optimization:
– Find algorithm with lowest IO cost to execute our

plan
– Intuition: Calculate based on physical parameters

(buffer size, etc.) and estimates of data size
(histograms)

Execution

SQL Query

Relational
Algebra (RA) Plan

Optimized
RA Plan

CSC 261, Spring 2018

1. LOGICAL OPTIMIZATION

CSC 261, Spring 2018

What you will learn about in this section

1. Optimization of RA Plans

CSC 261, Spring 2018

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan Execution

Declarative
query (from
user)

Translate to
relational algebra
expresson

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

CSC 261, Spring 2018

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan Execution

Relational Algebra allows us to translate declarative (SQL)
queries into precise and optimizable expressions!

CSC 261, Spring 2018

Recall: Logical Equivalence of RA Plans

• Given relations R(A,B) and S(B,C):

– Here, projection & selection commute:
• !!"#(Π!($)) = Π!(!!"#($))

–What about here?
• !!"#(Π$($))	?= Π$(!!"#($))

We’ll look at this in more depth later in the lecture…

CSC 261, Spring 2018

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan

Optimized
RA Plan Execution

We’ll look at how to then optimize these
plans now

CSC 261, Spring 2018

Note: We can visualize the plan as a tree

Π!

R(A,B) S(B,C)

Π!(# $, & ⋈ (&,))

Bottom-up tree traversal = order of operation execution!

CSC 261, Spring 2018

A simple plan

Π!

R(A,B) S(B,C)

What SQL query does this
correspond to?

Are there any logically
equivalent RA expressions?

CSC 261, Spring 2018

“Pushing down” projection

Π!

R(A,B) S(B,C)

Π!

R(A,B) S(B,C)

Π!

Why might we prefer this
plan?

CSC 261, Spring 2018

Takeaways

• This process is called logical optimization

• Many equivalent plans used to search for “good plans”

• Relational algebra is an important abstraction.

CSC 261, Spring 2018

Optimizing the SFW RA Plan

CSC 261, Spring 2018

RA commutators

• The basic commutators:
– Push projection through (1) selection, (2) join
– Push selection through (3) selection, (4) projection, (5) join
– Also: Joins can be re-ordered!

• Note that this is not an exhaustive set of operations

This simple set of tools allows us to greatly improve the
execution time of queries by optimizing RA plans!

CSC 261, Spring 2018

Translating to RA

CSC 261, Spring 2018

Π!,#(#!$%&		!(#).+,-.+	!(#	-..,/.. $	×	'×	()

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C)
T(C,D)

Π!,#

R(A,B) S(B,C)

T(C,D)

!!"#$!&'	(.*+,.*	!&'	,.-+..-

×

×

Note: For simplicity we are not
using rename operator. We will
allow this format for Exams and
quizzes

Translating to RA

CSC 261, Spring 2018

Π!,#

R(A,B) S(B,C)

T(C,D)

!!"#$		

×

×

"!.#$%.#	

"%.'$(.'	
Π!,#

R(A,B) S(B,C)

T(C,D)

!!"#$!&'	(.*+,.*	!&'	,.-+..-

×

×

Translating to RA

CSC 261, Spring 2018

Π!,#

R(A,B) S(B,C)

T(C,D)

sA<10

Π!,#

R(A,B) S(B,C)

T(C,D)

!!"#$		

×

×

"!.#$%.#	

"%.'$(.'	

Logical Optimization

• Heuristically, we want selections and projections to occur as early
as possible in the plan
– Terminology:
• “push down selections” and “push down projections.”

• Intuition: We will have fewer tuples in a plan.

CSC 261, Spring 2018

Π!,#

R(A,B) S(B,C)

T(C,D)

sA<10

Π!,#(#!$%& $ ⋈ & ⋈ ')

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing RA Plan

Push down
selection on A so
it occurs earlier

CSC 261, Spring 2018

Π!,#

R(A,B)

S(B,C)

T(C,D)

Π!,# " ⋈ $!$%&(&) ⋈ (

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C)
T(C,D)

Optimizing RA Plan

Push down
selection on A so
it occurs earlier

sA<10

CSC 261, Spring 2018

Π!,#

R(A,B)

S(B,C)

T(C,D)

Π!,# " ⋈ $!$%&(&) ⋈ (

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C)
T(C,D)

Optimizing RA Plan

Push down
projection so it
occurs earlier

sA<10

CSC 261, Spring 2018

Π!,#

R(A,B)

S(B,C)

T(C,D)

Π!,# " ⋈ Π!,$ $!%&'(&) ⋈ (

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C)
T(C,D)

Optimizing RA Plan

We eliminate B
earlier!

sA<10

Π!,$

In general, when
is an attribute
not needed…?

CSC 261, Spring 2018

Logical optimization

• Selections and Cross Product can be combined into joins
• Selections and projections can be pushed down (below joins)
• Joins can be extensively reordered.

CSC 261, Spring 2018

Equivalent Trees

(a) Two left-deep join query trees. (b) A right-deep join query
tree. (c) A bushy query tree.

CSC 261, Spring 2018

How to Handle Many Joins

CSC 261, Spring 2018

Reasons for Left-deep plans

• As the number of joins increases, the number of alternative plans
increases rapidly. It becomes necessary to prune the space of
alternative plans

• Left-deep trees allow us to fully pipelined plans.

CSC 261, Spring 2018

2. PHYSICAL OPTIMIZATION

CSC 261, Spring 2018

Cost functions for SELECT operation

• Teminology:
– r: Number of records
– b: Number of blocks
– bfr: blocking factor
– sl: selectivity (fraction of record satisfying the condition)
– s: selection cardinality = sl * r = number of records satisfying the condition
– x: Number of levels (you can treat as depth)
– l : number of leaves (# number of first level blocks)

CSC 261, Spring 2018

Cost functions for Select (Section: 19.4)

Algorithm Cost Special Cases

Linear Search b/2 b (if not found)

Binary Search log!$ +
&
$'(− 1 log!$ (if on a

unique key)
Primary Index + + 1
Hash Key 1

Ordering index (>, < , >=, <=) + + ($/2)
Clustering Index + + &

$'(
B+ tree index + + 1 + & + + 0/2 + (/2

CSC 261, Spring 2018

What you will learn about in this section

1. Index Selection

2. Histograms

CSC 261, Spring 2018

Index Selection

Input:
– Schema of the database
–Workload description: set of (query template, frequency) pairs

Goal: Select a set of indexes that minimize execution time of
the workload.
– Cost / benefit balance: Each additional index may help with some

queries, but requires updating

This is an optimization problem!

CSC 261, Spring 2018

Example

SELECT pname
FROM Product
WHERE year = ? AND Category = ?
AND manufacturer = ?

SELECT pname
FROM Product
WHERE year = ? AND category = ?

Frequency
10,000,000

Workload
description:

Frequency
10,000,000

Which indexes might we choose?

CSC 261, Spring 2018

Example

SELECT pname
FROM Product
WHERE year = ? AND Category =?
AND manufacturer = ?

SELECT pname
FROM Product
WHERE year = ? AND category =?

Frequency
10,000,000

Workload
description:

Frequency
100

Now which indexes might we choose? Worth keeping an
index with manufacturer in its search key around?

CSC 261, Spring 2018

Estimating index cost?

• Note that to frame as optimization problem, we first need an
estimate of the cost of an index lookup

• Need to be able to estimate the costs of different indexes / index
types…

We will see this mainly depends on
getting estimates of result set size!

CSC 261, Spring 2018

Ex: Clustered vs. Unclustered

Cost to do a range query for M entries over N-page file (P per page):

– Clustered:
• To traverse: Logf(1.5N)

• To scan: 1 random IO + !"#$ 	sequential IO

– Unclustered:
• To traverse: Logf(1.5N)
• To scan: ~ M random IO

Suppose we are using
a B+ Tree index with:
• Fanout f
• Fill factor 2/3

CSC 261, Spring 2018

Plugging in some numbers

• Clustered:
– To traverse: LogF(1.5N)
– To scan: 1 random IO + !"#$ sequential IO

• Unclustered:
– To traverse: LogF(1.5N)
– To scan: ~ M random IO

• If M = 1, then there is no difference!
• If M = 100,000 records, then difference is ~10min. Vs. 10ms!

To simplify:
• Random IO = ~10ms
• Sequential IO = free

~ 1 random IO = 10ms

~ M random IO = M*10ms

If only we had good estimates of M…

CSC 261, Spring 2018

HISTOGRAMS & IO COST
ESTIMATION

CSC 261, Spring 2018

IO Cost Estimation via Histograms

• For index selection:
–What is the cost of an index lookup?

• Also for deciding which algorithm to use:
– Ex: To execute R ⋈ #, which join algorithm should DBMS use?

–What if we want to compute $!"#$(&) ⋈ $%&#(()?

• In general, we will need some way to estimate intermediate
result set sizes

Histograms provide a way to efficiently
store estimates of these quantities

CSC 261, Spring 2018

Histograms

• A histogram is a set of value ranges (“buckets”) and the
frequencies of values in those buckets occurring

• How to choose the buckets?
– Equiwidth & Equidepth

• Turns out high-frequency values are very important

CSC 261, Spring 2018

0

5

10

1 2 3 4 5 6 7 8 9 101112131415
Values

Frequency

How do we
compute how
many values
between 8 and
10?
(Yes, it’s obvious)

Problem: counts take up too much space!

Example

CSC 261, Spring 2018

Fundamental Tradeoffs

• Want high resolution (like the full counts)

• Want low space (like uniform)

• Histograms are a compromise!

So how do we compute the “bucket” sizes?

CSC 261, Spring 2018

Equi-width

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All buckets roughly the same width

CSC 261, Spring 2018

Equidepth

0
2
4
6
8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All buckets contain roughly the same
number of items (total frequency)

CSC 261, Spring 2018

Histograms

• Simple, intuitive and popular

• Parameters: # of buckets and type

• Can extend to many attributes (multidimensional)

CSC 261, Spring 2018

Maintaining Histograms

• Histograms require that we update them!
– Typically, you must run/schedule a command to update statistics on the

database
– Out of date histograms can be terrible!

CSC 261, Spring 2018

Acknowledgement

• Some of the slides in this presentation are taken from the slides
provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

CSC 261, Spring 2018

Acknowledgement

• Some of the slides in this presentation are taken from the slides
provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

CSC 261, Spring 2018

