CSC 261/461 – Database Systems
Lecture 21

Spring 2018
Announcement

• MongoDB on Bluehive:
 - https://info.circ.rochester.edu/BlueHive/Software/Data_Analysis/mongodb.html

• Use the same password you use for blackboard

• Duo-authentication:
 – https://tech.rochester.edu/services/two-factor-authentication/
4. HASH JOIN (HJ)
Recall: Hashing

- **Magic of hashing:**
 - A hash function \(h_B \) maps into \([0, B-1]\)
 - And maps nearly uniformly

- A hash **collision** is when

- \(x \neq y \) but \(h_B(x) = h_B(y) \)

Note however that it will **never** occur that
\(x = y \) but \(h_B(x) \neq h_B(y) \)
To compute $R \bowtie S$ on A:

1. **Partition Phase**: Using one (shared) hash function h_B, partition R and S into B buckets

2. **Matching Phase**: Take pairs of buckets whose tuples have the same values for h, and join these
 1. Use BNLJ here; or hash again \rightarrow either way, operating on small partitions so fast!

Idea: We *decompose* the problem using h_B, then complete the join

Note again that we are only considering equality constraints here
Hash Join: High-level procedure

1. **Partition Phase:** Using one (shared) hash function h_B, partition R and S into B buckets

Two buckets for each file: Even and Odd

Note our new convention: pages each have two tuples (one per row)

More detail in a second...
2. Matching Phase: Take pairs of buckets whose tuples have the same values for h_B, and join these.
2. **Matching Phase:** Take pairs of buckets whose tuples have the same values for h_B, and join these.

Don’t have to join the others! E.g. $(S_1$ and $R_2)$!
Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into *buckets* such that if \(h_B(t_i.A) = h_B(t_j.A) \) they are in the same bucket.

For a Relation, Two tuples/records with the same A attribute must be in the same bucket.

Given B+1 buffer pages, we partition into B buckets:

- We use **B buffer pages for output** (one for each bucket), and **1 for input**
 - For each tuple t in input, copy to buffer page for \(h_B(t.A) \)
 - When page fills up, flush to disk.
How big are the resulting buckets?

Given \(B+1 \) buffer pages

- Given \(N \) input pages, we partition into \(B \) buckets:
 - \(\rightarrow \) Ideally our buckets are each of size \(\sim \frac{N}{B} \) pages
How big do we want the resulting buckets?

- Ideally, our buckets would be of size $\leq B - 1$ pages
 - 1 for input page, 1 for output page, $B-1$ for each bucket

- Recall: If we want to join a bucket from R and one from S, we can do BNLJ in linear time if for one of them (wlog say R), $P(R) \leq B - 1$!
 - And more generally, being able to fit bucket in memory is advantageous

- We can keep partitioning buckets that are $> B-1$ pages, until they are $\leq B - 1$ pages
 - Using a new hash key which will split them...

Given $B+1$ buffer pages

Recall for BNLJ:
$$P(R) + \frac{P(R)P(S)}{B - 1}$$

We’ll call each of these a “pass” again...
We partition into $B = 2$ buckets using hash function h_2 so that we can have one buffer page for each partition (and one for input).

For simplicity, we’ll look at partitioning one of the two relations- we just do the same for the other relation!

Recall: our goal will be to get $B = 2$ buckets of size $\leq B-1 \Rightarrow 1$ page each.
Hash Join Phase 1: Partitioning

1. We read pages from R into the “input” page of the buffer...

Given $B+1 = 3$ buffer pages
2. Then we use **hash function** h_2 to sort into the buckets, which each have one page in the buffer.
Hash Join Phase 1: Partitioning

2. Then we use **hash function** h_2 to sort into the buckets, which each have one page in the buffer.

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full...

Given $B+1 = 3$ buffer pages
Given $B+1 = 3$ buffer pages

3. We repeat until the buffer bucket pages are full...
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full...

Given $B+1 = 3$ buffer pages
3. We repeat until the buffer bucket pages are full... then flush to disk.

Given $B+1 = 3$ buffer pages

- Disk
 - R
 - (5,b)
 - (5,a)
 - (0,j)

- Main Memory
 - Buffer
 - (0,a)
 - (0,j)
 - (3,a)
 - (3,j)

- Input
 - 0
 - 1

- Output (bucket) pages
Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full... then flush to disk

Given $B+1 = 3$ buffer pages
Hash Join Phase 1: Partitioning

Note that collisions can occur!

Given $B+1 = 3$ buffer pages

Collision!!!

Disk

<table>
<thead>
<tr>
<th>Disk</th>
<th>Main Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>B0</td>
<td></td>
</tr>
<tr>
<td>(5,b)</td>
<td>(5,a)</td>
</tr>
<tr>
<td>(0,a)</td>
<td>(0,j)</td>
</tr>
<tr>
<td>(0,j)</td>
<td></td>
</tr>
<tr>
<td>(3,a)</td>
<td>(3,j)</td>
</tr>
<tr>
<td>(3,j)</td>
<td></td>
</tr>
</tbody>
</table>

Input pageOutput (bucket) pages

Input 0 1
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages

<table>
<thead>
<tr>
<th>Disk</th>
<th>Main Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>h_2(0) = 0</td>
</tr>
<tr>
<td>B0</td>
<td>(0, a), (0, j)</td>
</tr>
<tr>
<td>B1</td>
<td>(3, a), (3, j)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Input</th>
<th>Output (bucket) pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, a), (0, j)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(3, a), (3, j)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(5, b)
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages

Disk

- R
 - $(5, b)$
- $B0$
 - $(0, a)$
 - $(0, j)$
- $B1$
 - $(3, a)$
 - $(3, j)$

Main Memory

- Buffer
 - $(0, j)$
 - $(5, a)$

Input

- 0
- 1

Output (bucket) pages

CSC 261, Spring 2018
Hash Join Phase 1: Partitioning

Finish this pass...

Given $B+1 = 3$ buffer pages

Collision!!!

Main Memory

$h_2(5) = h_2(3) = 1$

Buffer

$(5, b)$ $(0, j)$ $(5, a)$ $(5, b)$

Input 0 1

pageOutput (bucket) pages
Hash Join Phase 1: Partitioning

Finish this pass...

Given \(B+1 = 3 \) buffer pages

Disk

Main Memory

Buffer

Input 0 1

pageOutput (bucket) pages

(0,a) (0,j)

(3,a) (3,j)

(0,j) (5,a) (5,b)
Hash Join Phase 1: Partitioning

Given \(B+1 = 3 \) buffer pages

We wanted buckets of size \(B-1 = 1 \)... however we got larger ones due to:

1. Duplicate join keys
2. Hash collisions

CSC 261, Spring 2018
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!

What hash function should we use?

Do another pass with a different hash function, h'_2, ideally such that:

$$h'_2(3) \neq h'_2(5)$$
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

To take care of larger buckets caused by (2) hash collisions, we can just do another pass!

What hash function should we use?

Do another pass with a different hash function, h'_2, ideally such that:

$h'_2(3) \neq h'_2(5)$
Hash Join Phase 1: Partitioning

Given $B+1 = 3$ buffer pages

What about duplicate join keys? Unfortunately this is a problem... but usually not a huge one.

We call this unevenness in the bucket size **skew**
Now that we have partitioned R and S...
Hash Join Phase 2: Matching

- Now, we just join pairs of buckets from R and S that have the same hash value to complete the join!
Hash Join Phase 2: Matching

• Note that since \(x = y \rightarrow h(x) = h(y) \), we only need to consider pairs of buckets (one from \(R \), one from \(S \)) that have the same hash function value.

• If our buckets are \(\sim B - 1 \) pages, can join each such pair using BNLJ in linear time; recall (with \(P(R) = B-1 \)):

\[
\text{BNLJ Cost: } P(R) + \frac{P(R)P(S)}{B-1} = P(R) + \frac{(B-1)P(S)}{B-1} = P(R) + P(S)
\]

Joining the pairs of buckets is linear!
(As long as smaller bucket \(\leq B-1 \) pages)
Hash Join Phase 2: Matching

R \bowtie S on A

\[
\begin{array}{cccccccc}
\hline
h(1) & h(1) & h(2) & h(2) & h(3) & h(4) & h(5) & h(6) \\
\hline
0 & 0 & 0 & 0 & 1 & 1 & 2 & 2 \\
\hline
\end{array}
\]
Hash Join Phase 2: Matching

To perform the join, we ideally just need to explore the dark blue regions

= the tuples with same values of the join key A

R \bowtie S on A
Hash Join Phase 2: Matching

With a join algorithm like BNLJ that doesn’t take advantage of equijoin structure, we’d have to explore this whole grid!
Hash Join Phase 2: Matching

With HJ, we only explore the blue regions

= the tuples with same values of $h(A)$!

We can apply BNLJ to each of these regions

$R \bowtie S$ on A
Hash Join Phase 2: Matching

An alternative to applying BNLJ:

We could also hash again, and keep doing passes in memory to reduce further!
Hash Join Summary

- **Partitioning** requires reading + writing each page of R, S
 - $\rightarrow 2(P(R) + P(S))$ IOs

- **Matching** (with BNLJ) requires reading each page of R, S
 - $\rightarrow P(R) + P(S)$ IOs

- **Writing out results** could be as bad as $P(R) \times P(S)$... but probably closer to $P(R) + P(S)$

HJ takes $\sim 3(P(R) + P(S)) + OUT$ IOs!
Sort-Merge vs. Hash Join

- *Given enough memory,* both SMJ and HJ have performance:

\[\sim 3(P(R) + P(S)) + OUT \]
• Hash Joins are highly parallelizable.

• Sort-Merge less sensitive to data skew and result is sorted
Summary

• Saw IO-aware join algorithms
 – Massive differences in performance.
Topics for Today

• Query Optimization (Chapter 19)
We will cover

1. Logical Optimization

2. Physical Optimization
• **Logical optimization:**
 – Find equivalent plans that are more efficient
 – Intuition: Minimize # of tuples at each step by changing the order of RA operators

• **Physical optimization:**
 – Find algorithm with lowest IO cost to execute our plan
 – Intuition: Calculate based on physical parameters (buffer size, etc.) and estimates of data size (histograms)
1. LOGICAL OPTIMIZATION
What you will learn about in this section

1. Optimization of RA Plans
RDBMS Architecture

How does a SQL engine work?

1. **SQL Query**
 - Declarative query (from user)

2. **Relational Algebra (RA) Plan**
 - Translate to relational algebra expression

3. **Optimized RA Plan**
 - Find logically equivalent but more efficient RA expression

4. **Execution**
 - Execute each operator of the optimized plan!
RDBMS Architecture

How does a SQL engine work?

Relational Algebra (RA) Plan → Optimized RA Plan → Execution

Relational Algebra allows us to translate declarative (SQL) queries into precise and optimizable expressions!
Recall: Logical Equivalence of RA Plans

• Given relations R(A,B) and S(B,C):
 – Here, projection & selection commute:
 • \(\sigma_{A=5}(\Pi_A(R)) = \Pi_A(\sigma_{A=5}(R)) \)
 – What about here?
 • \(\sigma_{A=5}(\Pi_B(R)) = \Pi_B(\sigma_{A=5}(R)) \)

We’ll look at this in more depth later in the lecture...
How does a SQL engine work?

We’ll look at how to then optimize these plans now
Note: We can visualize the plan as a tree

\[\Pi_B(R(A, B) \bowtie S(B, C)) \]

Bottom-up tree traversal = order of operation execution!

CSC 261, Spring 2018
What SQL query does this correspond to?

Are there any logically equivalent RA expressions?
“Pushing down” projection

Why might we prefer this plan?
Takeaways

• This process is called **logical optimization**

• Many equivalent plans used to search for “good plans”

• Relational algebra is an important abstraction.
Optimizing the SFW RA Plan
RA commutators

• The basic commutators:
 – Push projection through (1) selection, (2) join
 – Push selection through (3) selection, (4) projection, (5) join
 – Also: Joins can be re-ordered!

• Note that this is not an exhaustive set of operations

This simple set of tools allows us to greatly improve the execution time of queries by optimizing RA plans!
Translating to RA

\[
\begin{align*}
\text{SELECT} & \quad R.A, S.D \\
\text{FROM} & \quad R, S, T \\
\text{WHERE} & \quad R.B = S.B \\
& \quad \text{AND} \quad S.C = T.C \\
& \quad \text{AND} \quad R.A < 10;
\end{align*}
\]

\[
\Pi_{A,D}(\sigma_{A<10 \ AND \ R.B=S.B \ AND \ S.C=T.C}(R \times S \times T))
\]

Note: For simplicity we are not using rename operator. We will allow this format for Exams and quizzes.
Translating to RA

\[\sigma_{A<10} \land R.B = S.B \land S.C = T.C \]

\[\Pi_{A,D} \]

\[\times \]

\[T(C,D) \]

\[\times \]

\[R(A,B) \]

\[S(B,C) \]
Translating to RA

\[\Pi_{A,D} \]
\[\sigma_{A<10} \]
\[\sigma_{S.C=T.C} \]
\[\times \]
\[\sigma_{R.B=S.B} \]
\[T(C,D) \]
\[\times \]
\[R(A,B) \]
\[S(B,C) \]

\[\Pi_{A,D} \]
\[\sigma_{A<10} \]
\[T(C,D) \]
\[R(A,B) \]
\[S(B,C) \]
• Heuristically, we want selections and projections to occur as early as possible in the plan
 – Terminology:
 • “push down selections” and “push down projections.”

• Intuition: We will have fewer tuples in a plan.
Optimizing RA Plan

\[\Pi_{A,D}(\sigma_{A<10}(T \bowtie (R \bowtie S))) \]

Push down selection on A so it occurs earlier

\[\text{SELECT } R.A, S.D \]
\[\text{FROM } R, S, T \]
\[\text{WHERE } R.B = S.B \]
\[\text{AND } S.C = T.C \]
\[\text{AND } R.A < 10; \]
Optimizing RA Plan

\[\Pi_{A,D} \left(T \bowtie \left(\sigma_{A<10}(R) \bowtie S \right) \right) \]

Push down selection on A so it occurs earlier.
Optimizing RA Plan

\[\Pi_{A,D} (T \bowtie (\sigma_{A<10}(R) \bowtie S)) \]

Push down projection so it occurs earlier
Optimizing RA Plan

\[
\Pi_{A,D} \left(T \Join \Pi_{A,C} (\sigma_{A<10}(R) \Join S) \right)
\]

We eliminate B earlier!

In general, when is an attribute not needed...?

R(A,B) S(B,C) T(C,D)

\begin{tabular}{l}
SELECT R.A, S.D \\
FROM R, S, T \\
WHERE R.B = S.B \\
\hspace{1em} AND S.C = T.C \\
\hspace{1em} AND R.A < 10;
\end{tabular}

CSC 261, Spring 2018
Logical optimization

- Selections and Cross Product can be combined into joins
- Selections and projections can be pushed down (below joins)
- Joins can be extensively reordered.
Equivalent Trees

(a) Two left-deep join query trees. (b) A right-deep join query tree. (c) A bushy query tree.
How to Handle Many Joins

<table>
<thead>
<tr>
<th>No. of Relations N</th>
<th>No. of Left-Deep Trees $N!$</th>
<th>No. of Bushy Shapes $S(N)$</th>
<th>No. of Bushy Trees $(2N - 2)!/(N - 1)!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>14</td>
<td>1,680</td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td>42</td>
<td>30,240</td>
</tr>
<tr>
<td>7</td>
<td>5,040</td>
<td>132</td>
<td>665,280</td>
</tr>
</tbody>
</table>
Reasons for Left-deep plans

• As the number of joins increases, the number of alternative plans increases rapidly. It becomes necessary to prune the space of alternative plans.

• Left-deep trees allow us to fully pipelined plans.
2. PHYSICAL OPTIMIZATION
Cost functions for SELECT operation

• Terminology:
 – r: Number of records
 – b: Number of blocks
 – bfr: blocking factor
 – sl: selectivity (fraction of record satisfying the condition)
 – s: selection cardinality = sl * r = number of records satisfying the condition
 – x: Number of levels (you can treat as depth)
 – l: number of leaves (# number of first level blocks)
Cost functions for Select (Section: 19.4)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Cost</th>
<th>Special Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Search</td>
<td>$b/2$</td>
<td>b (if not found)</td>
</tr>
<tr>
<td>Binary Search</td>
<td>$\log_2 b + \left\lceil \left(\frac{s}{bfr} \right) \right\rceil - 1$</td>
<td>$\log_2 b$ (if on a unique key)</td>
</tr>
<tr>
<td>Primary Index</td>
<td>$x + 1$</td>
<td></td>
</tr>
<tr>
<td>Hash Key</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ordering index ($>,$ $<,$ $\geq,$ \leq)</td>
<td>$x + (b/2)$</td>
<td></td>
</tr>
<tr>
<td>Clustering Index</td>
<td>$x + \left\lceil \left(\frac{s}{bfr} \right) \right\rceil$</td>
<td></td>
</tr>
<tr>
<td>B+ tree index</td>
<td>$x + 1 + s$</td>
<td>$x + l/2 + r/2$</td>
</tr>
</tbody>
</table>
1. Index Selection

2. Histograms
Index Selection

Input:
- Schema of the database
- **Workload description**: set of (query template, frequency) pairs

Goal: Select a set of indexes that minimize execution time of the workload.
- Cost / benefit balance: Each additional index may help with some queries, but requires updating

This is an optimization problem!
Example

Workload description:

```
SELECT pname 
FROM Product 
WHERE year = ? AND category = ?
```

```
SELECT pname 
FROM Product 
WHERE year = ? AND Category = ? 
AND manufacturer = ?
```

Frequency 10,000,000

Which indexes might we choose?
Workload description:

\[
\text{SELECT } \text{pname} \\
\text{FROM } \text{Product} \\
\text{WHERE } \text{year} = ? \text{ AND category = } ? \\
\]

\[
\text{SELECT } \text{pname} \\
\text{FROM } \text{Product} \\
\text{WHERE } \text{year} = ? \text{ AND Category = } ? \\
\text{AND manufacturer = } ? \\
\]

Frequency
10,000,000

Frequency
100

Now which indexes might we choose? Worth keeping an index with manufacturer in its search key around?
Estimating index cost?

• Note that to frame as optimization problem, we first need an estimate of the cost of an index lookup

• Need to be able to estimate the costs of different indexes / index types...

We will see this mainly depends on getting estimates of result set size!
Ex: Clustered vs. Unclustered

Cost to do a range query for M entries over N-page file (P per page):

– Clustered:
 • To traverse: $\log_f(1.5N)$
 • To scan: 1 random IO + $\left\lceil \frac{M-1}{P} \right\rceil$ sequential IO

– Unclustered:
 • To traverse: $\log_f(1.5N)$
 • To scan: $\sim M$ random IO

Suppose we are using a B+ Tree index with:
• Fanout f
• Fill factor $2/3$
Plugging in some numbers

- Clustered:
 - To traverse: \(\log_F(1.5N) \)
 - To scan: 1 random IO + \(\left\lceil \frac{M-1}{P} \right\rceil \) sequential IO

- Unclustered:
 - To traverse: \(\log_F(1.5N) \)
 - To scan: \(\sim M \) random IO

- If \(M = 1 \), then there is no difference!
- If \(M = 100,000 \) records, then difference is \(\sim 10 \text{ min.} \) Vs. 10ms!

To simplify:
- Random IO = \(\sim 10 \text{ms} \)
- Sequential IO = free

\(\sim 1 \text{ random IO} = 10 \text{ms} \)

\(\sim M \) random IO = \(M \times 10 \text{ms} \)

If only we had good estimates of \(M \)...
HISTOGRAMS & IO COST ESTIMATION
For **index selection**:
- What is the cost of an index lookup?

Also for **deciding which algorithm to use**:
- Ex: To execute $R \bowtie S$, which join algorithm should DBMS use?
- What if we want to compute $\sigma_{A>10}(R) \bowtie \sigma_{B=1}(S)$?

In general, we will need some way to **estimate intermediate result set sizes**

Histograms provide a way to efficiently store estimates of these quantities
A histogram is a set of value ranges ("buckets") and the frequencies of values in those buckets occurring.

How to choose the buckets?
- Equiwidth & Equidepth

Turns out high-frequency values are very important.
How do we compute how many values between 8 and 10? (Yes, it’s obvious)

Problem: counts take up too much space!
Fundamental Tradeoffs

• Want high resolution (like the full counts)

• Want low space (like uniform)

• Histograms are a compromise!

So how do we compute the “bucket” sizes?
All buckets roughly the same width
All buckets contain roughly the same number of items (total frequency)
Histograms

• Simple, intuitive and popular

• Parameters: # of buckets and type

• Can extend to many attributes (multidimensional)
Maintaining Histograms

- Histograms require that we update them!
 - Typically, you must run/schedule a command to update statistics on the database
 - Out of date histograms can be terrible!
Acknowledgement

• Some of the slides in this presentation are taken from the slides provided by the authors.
• Many of these slides are taken from cs145 course offered by Stanford University.
• Some of the slides in this presentation are taken from the slides provided by the authors.
• Many of these slides are taken from cs145 course offered by Stanford University.