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Announcement

• MongoDb on Bluehive:
• http://www.cs.rochester.edu/courses/261/spring2018/projects/pr

oj3/mongodb-tutorial.html
• https://info.circ.rochester.edu/BlueHive/Software/Data_Analysis/

mongodb.html

• Use the same password you use for blackboard
• Duo-authentication:
– https://tech.rochester.edu/services/two-factor-authentication/
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4. HASH JOIN (HJ)
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Recall: Hashing

• Magic of hashing:
–A hash function hB maps into [0,B-1]
–And maps nearly uniformly

• A hash collision is when 
• x != y but hB(x) = hB(y)

Note however that it will 
never occur that 
x = y but hB(x) != hB(y)
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Hash Join: High-level procedure

To compute R ⋈ #	%&	':

1. Partition Phase: Using one (shared) hash function hB, partition R 
and S into B buckets

2. Matching Phase: Take pairs of buckets whose tuples have the 
same values for h, and join these
1. Use BNLJ here; or hash again à either way, operating on small 

partitions so fast!

Note again that we are only 
considering equality constraints here

Idea: We decompose the problem using hB, 
then complete the join
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Hash Join: High-level procedure

1. Partition Phase: Using one (shared) hash function hB, 
partition R and S into B buckets

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

More detail in 
a second…

(0,a)
(0,a)

(0,j)

(3,j)
(3,b)

(0,a)
(0,j)

(5,b)(5,b)

Note our new 
convention: 
pages each 
have two 
tuples (one per 
row)
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Hash Join: High-level procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join 
matching 
buckets

2. Matching Phase: Take pairs of buckets whose tuples have the same 
values for hB, and join these

(3,j)
(3,b)
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Hash Join: High-level procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Don’t have 
to join the 
others!  
E.g. 
(S1 and R2)!

2. Matching Phase: Take pairs of buckets whose tuples have the same 
values for hB, and join these

(3,j)
(3,b)
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Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into buckets such that if 
hB(ti.A) = hB(tj.A) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:
–We use B buffer pages for output (one for each 

bucket), and 1 for input
• For each tuple t in input, copy to buffer page for hB(t.A)
•When page fills up, flush to disk.

For a Relation, Two tuples/records with the 
same A attribute must be in the same 
bucket
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How big are the resulting buckets?

• Given N input pages, we partition into B buckets:
–à Ideally our buckets are each of size ~ N/B pages

Given B+1 buffer
pages
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How big do we want the resulting buckets?

• Ideally, our buckets would be of size ≤ "− $ pages
– 1 for input page, 1 for output page, B-1 for each bucket

• Recall: If we want to join a bucket from R and one from 
S, we can do BNLJ in linear time if for one of them 
(wlog say R),  	&(() ≤ "− $!
– And more generally, being able to fit bucket in memory is 

advantageous

• We can keep partitioning buckets that are > B-1 pages, 
until they are ≤ "− $ pages
– Using a new hash key which will split them… 

We’ll call each of 
these a “pass” again…

Given B+1 buffer
pages

Recall	for	BNLJ:
P 0 +	2 0 2(4)

6 − 1
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Hash Join Phase 1: Partitioning

We partition into B = 2 buckets using hash function h2 so that we 
can have one buffer page for each partition (and one for input)

Disk

Given B+1 = 3 buffer pages

R

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

For simplicity, we’ll look at partitioning 
one of the two relations- we just do the 
same for the other relation!

Recall: our goal will be to get B = 2 
buckets of size <= B-1 à 1 page each
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Hash Join Phase 1: Partitioning

1. We read pages from R into the “input” page of the buffer…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)
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Hash Join Phase 1: Partitioning

2. Then we use hash function h2 to sort into the buckets, 
which each have one page in the buffer

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,a)

h2(0) = 0

(0,a)
(3,a)

(0,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)
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Main Memory

Buffer

Hash Join Phase 1: Partitioning

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,a)

h2(3) = 1

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

2. Then we use hash function h2 to sort into the buckets, which each 
have one page in the buffer
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Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

CSC 261, Spring 2018



Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(3) = 1

(3,j)
(0,j)

(3,a)
(3,j)
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Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(0) = 0

(3,a)
(3,j)

(0,a)
(0,j)
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Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush 
to disk

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

B0

B1

(3,a)
(3,j)

(0,a)
(0,j)
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Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush 
to disk

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)
(0,j)
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Hash Join Phase 1: Partitioning

Note that collisions can occur!

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(5) = 1

Collision!!!

(5,a)
(0,j)

(5,a)

h2(5) = h2(3) = 1
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Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(0) = 0

(5,a)(0,j)
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Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)

(5,b)
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Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)(5,b)

h2(5) = 1

(5,a)
(5,b)

h2(5) = h2(3) = 1

Collision!!!
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Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Inpu
t 

page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j) (5,a)
(5,b)
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Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

We wanted buckets of size B-1 = 1… 
however we got larger ones due to:

(1) Duplicate join 
keys

(2) Hash collisions
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Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

To take care of larger 
buckets caused by (2) hash 
collisions, we can just do 
another pass!

What hash function should 
we use?

Do another pass with a 
different hash function, h’2, 
ideally such that:

h’2(3) != h’2(5)
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Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

To take care of larger 
buckets caused by (2) hash 
collisions, we can just do 
another pass!
What hash function should 
we use?

Do another pass with a 
different hash function, h’2, 
ideally such that:

h’2(3) != h’2(5)
B2

(5,a)
(5,b)
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Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

What about duplicate join keys?  
Unfortunately this is a problem… 
but usually not a huge one.

B2
(5,a)
(5,b)

We call this unevenness 
in the bucket size skew
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Now that we have partitioned R and S…
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Hash Join Phase 2: Matching

• Now, we just join pairs of buckets from R and S that have the same 
hash value to complete the join!

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join 
matching 
buckets

(3,j)
(3,b)
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Hash Join Phase 2: Matching

• Note that since x = y à h(x) = h(y), we only need to consider pairs of 
buckets (one from R, one from S) that have the same hash function 
value

• If our buckets are ~" − $ pages, can join each such pair using BNLJ in 
linear time; recall (with P(R) = B-1):

BNLJ Cost: P " +	! " !($)
&'( = &(") +	 (&'()!($)&'( = P(R) + P(S)

Joining the pairs of buckets is linear!  
(As long as smaller bucket <= B-1 pages)
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed 
values

R ⋈ #	%&	'	
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed 
values

R ⋈ #	%&	'	
To perform the join, we 
ideally just need to 
explore the dark blue 
regions 

= the tuples with same 
values of the join key A

A=1

A=2

A=3

A=4
A=5

A=6
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed 
values

R ⋈ #	%&	'	
With a join algorithm like 
BNLJ that doesn’t take 
advantage of equijoin 
structure, we’d have to 
explore this whole grid!
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed 
values

R ⋈ #	%&	'	
h(A)=0

h(A)=1

h(A)=2

With HJ, we only 
explore the blue 
regions

= the tuples with 
same values of h(A)!

We can apply BNLJ to 
each of these regions

CSC 261, Spring 2018



Hash Join Phase 2: Matching

R.A 
hashed 
values

S.A hashed 
values

R ⋈ #	%&	'	h'(A)=0

h'(A)
=2

An alternative to 
applying BNLJ:

We could also hash 
again, and keep 
doing passes in 
memory to reduce 
further!

h'(A)=1

h'(A)=
3 h'(A)=

4

h'(A)=5
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Hash Join Summary

– Partitioning requires reading + writing each page of R,S
• à 2(P(R)+P(S)) IOs

–Matching (with BNLJ) requires reading each page of R,S
• à P(R) + P(S) IOs

–Writing out results could be as bad as P(R)*P(S)… but probably closer 
to P(R)+P(S)

HJ takes ~3(P(R)+P(S)) + OUT IOs!
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Sort-Merge vs. Hash Join

• Given enough memory, both SMJ and HJ have 
performance:

~3(P(R)+P(S)) + OUT
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Further Comparisons of Hash and Sort Joins

• Hash Joins are highly parallelizable.

• Sort-Merge less sensitive to data skew and result is 
sorted
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Summary

• Saw IO-aware join algorithms
–Massive differences in performance. 
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Topics for Today

• Query Optimization (Chapter 19)
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We will cover

1. Logical Optimization

2. Physical Optimization
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Logical vs. Physical Optimization

• Logical optimization:
– Find equivalent plans that are more efficient
– Intuition: Minimize # of tuples at each step by 

changing the order of RA operators

• Physical optimization:
– Find algorithm with lowest IO cost to execute our 

plan
– Intuition: Calculate based on physical parameters 

(buffer size, etc.) and estimates of data size 
(histograms)

Execution

SQL Query

Relational 
Algebra (RA) Plan

Optimized
RA Plan
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1. LOGICAL OPTIMIZATION
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What you will learn about in this section

1. Optimization of RA Plans
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RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan Execution

Declarative 
query (from 
user)

Translate to 
relational algebra 
expresson

Find logically 
equivalent- but 
more efficient- RA 
expression

Execute each 
operator of the 
optimized plan!
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RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan Execution

Relational Algebra allows us to translate declarative (SQL) 
queries into precise and optimizable expressions!
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Recall: Logical Equivalence of RA Plans

• Given relations R(A,B) and S(B,C):

– Here, projection & selection commute: 
• !!"#(Π!($)) = Π!(!!"#($))

–What about here?
• !!"#(Π$($))	?= Π$(!!"#($))

We’ll look at this in more depth later in the lecture…
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RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra 

(RA) Plan

Optimized
RA Plan Execution

We’ll look at how to then optimize these 
plans now
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Note: We can visualize the plan as a tree

Π!

R(A,B) S(B,C)

Π!(# $, & ⋈ ( &, ) )

Bottom-up tree traversal = order of operation execution! 
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A simple plan

Π!

R(A,B) S(B,C)

What SQL query does this 
correspond to?

Are there any logically 
equivalent RA expressions?
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“Pushing down” projection

Π!

R(A,B) S(B,C)

Π!

R(A,B) S(B,C)

Π!

Why might we prefer this 
plan?
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Takeaways

• This process is called logical optimization

• Many equivalent plans used to search for “good plans”

• Relational algebra is an important abstraction.
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Optimizing the SFW RA Plan
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RA commutators

• The basic commutators:
– Push projection through (1) selection, (2) join
– Push selection through (3) selection, (4) projection, (5) join
– Also: Joins can be re-ordered!

• Note that this is not an exhaustive set of operations

This simple set of tools allows us to greatly improve the 
execution time of queries by optimizing RA plans!
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Translating to RA

CSC 261, Spring 2018

Π!,#(#!$%&		!(#	).+,-.+	!(#	-..,/.. $	×	'×	( )

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  
T(C,D)

Π!,#

R(A,B) S(B,C)

T(C,D)

!!"#$		!&'	(.*+,.*	!&'	,.-+..-

×

×

Note: For simplicity we are not 
using rename operator. We will 
allow this format for Exams and 
quizzes



Translating to RA
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Π!,#

R(A,B) S(B,C)

T(C,D)

!!"#$		

×

×

"!.#$%.#	

"%.'$(.'	
Π!,#

R(A,B) S(B,C)

T(C,D)

!!"#$		!&'	(.*+,.*	!&'	,.-+..-

×

×



Translating to RA
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Π!,#

R(A,B) S(B,C)

T(C,D)

sA<10

Π!,#

R(A,B) S(B,C)

T(C,D)

!!"#$		

×

×

"!.#$%.#	

"%.'$(.'	



Logical Optimization

• Heuristically, we want selections and projections to occur as early 
as possible in the plan 
– Terminology:
• “push down selections” and “push down projections.”

• Intuition: We will have fewer tuples in a plan.
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Π!,#

R(A,B) S(B,C)

T(C,D)

sA<10

Π!,#(#!$%& $ ⋈ & ⋈ ' )

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  T(C,D)

Optimizing RA Plan

Push down 
selection on A so 
it occurs earlier 
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Π!,#

R(A,B)

S(B,C)

T(C,D)

Π!,# " ⋈ $!$%&(&) ⋈ (

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  
T(C,D)

Optimizing RA Plan

Push down 
selection on A so 
it occurs earlier 

sA<10
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Π!,#

R(A,B)

S(B,C)

T(C,D)

Π!,# " ⋈ $!$%&(&) ⋈ (

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  
T(C,D)

Optimizing RA Plan

Push down 
projection so it 
occurs earlier 

sA<10
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Π!,#

R(A,B)

S(B,C)

T(C,D)

Π!,# " ⋈ Π!,$ $!%&'(&) ⋈ (

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  
T(C,D)

Optimizing RA Plan

We eliminate B 
earlier!

sA<10

Π!,$

In general, when 
is an attribute 
not needed…?
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Logical optimization

• Selections and Cross Product can be combined into joins
• Selections and projections can be pushed down (below joins)
• Joins can be extensively reordered.
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Equivalent Trees

(a) Two left-deep join query trees. (b) A right-deep join query 
tree. (c) A bushy query tree.
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How to Handle Many Joins
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Reasons for Left-deep plans 

• As the number of joins increases, the number of alternative plans 
increases rapidly. It becomes necessary to prune the space of 
alternative plans

• Left-deep trees allow us to fully pipelined plans. 
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2. PHYSICAL OPTIMIZATION

CSC 261, Spring 2018



Cost functions for SELECT operation

• Teminology:
– r: Number of records
– b: Number of blocks
– bfr: blocking factor
– sl: selectivity (fraction of record satisfying the condition)
– s: selection cardinality = sl * r = number of records satisfying the condition
– x: Number of levels (you can treat as depth)
– l : number of leaves (# number of first level blocks)
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Cost functions for Select (Section: 19.4)

Algorithm Cost Special Cases

Linear Search b/2 b (if not found)

Binary Search log!$ +
&
$'( − 1 log!$ (if on a 

unique key)
Primary Index + + 1
Hash Key 1

Ordering index (>, < , >=, <=) + + ($/2)
Clustering Index + + &

$'(
B+ tree index + + 1 + & + + 0/2 + (/2
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What you will learn about in this section

1. Index Selection

2. Histograms
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Index Selection

Input:
– Schema of the database
–Workload description: set of (query template, frequency) pairs

Goal: Select a set of indexes that minimize execution time of 
the workload.
– Cost / benefit balance: Each additional index may help with some 

queries, but requires updating

This is an optimization problem!

CSC 261, Spring 2018



Example

SELECT pname
FROM Product
WHERE year = ? AND Category = ? 
AND manufacturer = ?

SELECT pname
FROM Product
WHERE year = ? AND category = ?

Frequency 
10,000,000

Workload 
description:

Frequency 
10,000,000

Which indexes might we choose?
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Example

SELECT pname
FROM Product
WHERE year = ? AND Category =? 
AND manufacturer = ?

SELECT pname
FROM Product
WHERE year = ? AND category =?

Frequency
10,000,000

Workload 
description:

Frequency
100

Now which indexes might we choose?  Worth keeping an 
index with manufacturer in its search key around?
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Estimating index cost?

• Note that to frame as optimization problem, we first need an 
estimate of the cost of an index lookup

• Need to be able to estimate the costs of different indexes / index 
types…

We will see this mainly depends on 
getting estimates of result set size!
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Ex: Clustered vs. Unclustered

Cost to do a range query for M entries over N-page file (P per page):

– Clustered: 
• To traverse: Logf(1.5N)

• To scan: 1 random IO + !"#$ 	sequential IO

– Unclustered: 
• To traverse: Logf(1.5N)
• To scan: ~ M random IO

Suppose we are using 
a B+ Tree index with:
• Fanout f
• Fill factor 2/3
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Plugging in some numbers

• Clustered: 
– To traverse: LogF(1.5N)
– To scan: 1 random IO + !"#$ sequential IO

• Unclustered: 
– To traverse: LogF(1.5N)
– To scan: ~ M random IO

• If M = 1, then there is no difference!
• If M = 100,000 records, then difference is ~10min. Vs. 10ms!

To simplify:
• Random IO = ~10ms
• Sequential IO = free

~ 1 random IO = 10ms

~ M random IO = M*10ms

If only we had good estimates of M…
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HISTOGRAMS & IO COST 
ESTIMATION
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IO Cost Estimation via Histograms

• For index selection:
–What is the cost of an index lookup?

• Also for deciding which algorithm to use:
– Ex: To execute R ⋈ #, which join algorithm should DBMS use?

–What if we want to compute $!"#$(&) ⋈ $%&#(()?

• In general, we will need some way to estimate intermediate 
result set sizes

Histograms provide a way to efficiently 
store estimates of these quantities
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Histograms

• A histogram is a set of value ranges (“buckets”) and the 
frequencies of values in those buckets occurring

• How to choose the buckets?
– Equiwidth & Equidepth

• Turns out high-frequency values are very important
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Frequency

How do we 
compute how 
many values 
between 8 and 
10? 
(Yes, it’s obvious)

Problem: counts take up too much space!

Example
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Fundamental Tradeoffs

• Want high resolution (like the full counts)

• Want low space (like uniform)

• Histograms are a compromise!

So how do we compute the “bucket” sizes?
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Equi-width
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All buckets roughly the same width

CSC 261, Spring 2018



Equidepth
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All buckets contain roughly the same 
number of items (total frequency)
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Histograms

• Simple, intuitive and popular

• Parameters: # of buckets and type

• Can extend to many attributes (multidimensional)
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Maintaining Histograms

• Histograms require that we update them!
– Typically, you must run/schedule a command to update statistics on the 

database
– Out of date histograms can be terrible!

CSC 261, Spring 2018



Acknowledgement

• Some of the slides in this presentation are taken from the slides 
provided by the authors. 

• Many of these slides are taken from cs145 course offered by
Stanford University.

CSC 261, Spring 2018



Acknowledgement

• Some of the slides in this presentation are taken from the slides 
provided by the authors. 

• Many of these slides are taken from cs145 course offered by
Stanford University.

CSC 261, Spring 2018


