
CSC 261/461 – Database Systems
Lecture 22

Spring 2018

Announcements

• Project 3 (MongoDB) is out
– Due on April 19
– Please go to workshop this week!

• Project 1 Milestone 4 is out too...
– Due on last day of lecture
– Extra credit for best projects
– Demo during exam week.

• Term Paper:
– Due date is approaching
– Final submission is due on April 18, 2018 @ 11:59 pm. Please submit on time.

• Optional Project 4:
– Spark
– On bluehive
– I will give you a very brief introduction
– Will provide you a few Jupyter Notebook to practice.

Topics for Today

• MongoDb

MONGODB

What is MongoDB

• Scalable High-Performance Open-source, Document-orientated
database.

• Built for Speed

• Rich Document based queries for Easy readability.

• Full Index Support for High Performance.

• Map / Reduce for Aggregation.

Why use MongoDB?

• SQL was invented in the 70’s to store data.

• MongoDB stores documents (or) objects

• Embedded documents and arrays reduce need for joins

Why will we use Mongodb?

• Semi-Structured Content Management

XML -> Tables

• For Project 2 we have done:

Items -> User, Item, Category, Bid

XML Format

JSON Format

Object-relational impedance mismatch

• A set of conceptual and technical difficulties that are often
encountered:
– when a relational database management system (RDBMS) is being served

by an application program (or multiple application programs) written in
an object-oriented programming language

• Objects or class definitions must be mapped to database tables
defined by relational schema.

MongoDB: No Impedance Mismatch

// your application code
class Foo { int x; string [] tags;}

// mongo document for Foo
{ x: 1, tags: [�abc�,�xyz�] }

Database

When I say

Database
Think

• Made up of Multiple Collections.

• Created on-the-fly when referenced for the first time.

Collection

When I say

Table
Think

• Schema-less, and contains Documents.

• Indexable by one/more keys.

• Created on-the-fly when referenced for the first time.

• Capped Collections: Fixed size, older records get dropped after
reaching the limit.

Document

When I say

Record/Row
Think

• Stored in a Collection.

• Have _id key – works like Primary keys in MySQL.

• Supported Relationships – Embedded (or) References.

• Document storage in BSON (Binary form of JSON).

The Document Model

var post = {

‘_id’: ObjectId(‘3432’),

‘author’: ObjectId(‘2311’),

‘title’: ‘Introduction to MongoDB’,

‘body’: ‘MongoDB is an open sources.. ‘,

‘timestamp’: Date(’01-04-12’),

‘tags’: [‘MongoDB’, ‘NoSQL’],

‘comments’: [{‘author’: ObjectId(‘5331’),

‘date’: Date(’02-04-12’),

‘text’: ‘Did you see.. ‘,

‘upvotes’: 7}]

}

> db.posts.insert(post);

// find posts which has ‘MongoDB’ tag.
> db.posts.find({tags: ‘MongoDB’});

// find posts by author’s comments.
> db.posts.find({‘comments.author’: ‘Johnson’}).count();

// find posts written after 31st March.
> db.posts.find({‘timestamp’: {‘$gte’: Date(’31-03-12’)}});

$gt, $lt, $gte, $lte, $ne, $all, $in, $nin…

Find

Which fields?

db.foo.find(query, projection)

Which documents?

Find

Find: Projection

> db.posts.find({}, {title:1})

{ "_id" : ObjectId("5654381f37f63ffc4ebf1964"),
"title" : "NodeJS server" }

{ "_id" : ObjectId("5654385c37f63ffc4ebf1965"),
"title" : "Introduction to MongoDB" }

Like
select title from posts

Empty projection like
select * from posts

•Query criteria
•Single value field
•Array field
•Sub-document / dot notation

Find

•Field inclusion and exclusionProjection

•Sort
•Limit
•Skip

Cursor

Find

> db.posts.update(
{"_id" : ObjectId("5654381f37f63ffc4ebf1964")},
{

title:"NodeJS server"
});

This will replace the document by {title:"NodeJS server"}

Update

> db.posts.update(
{"_id" : ObjectId("5654381f37f63ffc4ebf1964")},
{

$addToSet: {tags:"JS"},
$set: {title:"NodeJS server"},
$unset: { comments: 1}

});

$set, $unset
$push, $pull, $pop, $addToSet
$inc, $decr, many more…

Update: Change part of the document

db.foo.update(query,update,options);

Collection Name

Which
Document?

What
Change?

One?
Many?
Upsert?

Options:
{multi: true} – will change all found documents;

by default only first found will be updated
{upsert: true} – will insert document if it was not found

Update

Remove

• db.collection.remove(<query>, <justOne>)

• db.items.remove({Currently: { $gt: 20 } })

Aggregation

Aggregation

• https://docs.mongodb.com/v3.0/applications/aggregation/

• https://www.safaribooksonline.com/blog/2013/06/21/aggregation
-in-mongodb/

MapReduce

Acknowledgement

• Some of the slides in this presentation are taken from the slides
provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

