CSC 261/461 — Database Systems
Lecture 22

Spring 2018

Announcements

Project 3 (MongoDB) is out
— Due on April 19
— Please go to workshop this week!

Project 1 Milestone 4 is out too...
— Due on last day of lecture

— Extra credit for best projects
— Demo during exam week.

Term Paper:
— Due date is approaching
— Final submission is due on April 18, 2018 @ 11:59 pm. Please submit on time.

Optional Project 4:

— Spark

— On bluehive

— | will give you a very brief introduction

— Will provide you a few Jupyter Notebook to practice.

Topics for Today

* MongoDb

MONGODB

What is MongoDB

* Scalable High-Performance Open-source, Document-orientated
database.

e Built for Speed
e Rich Document based queries for Easy readability.
e Full Index Support for High Performance.

e Map / Reduce for Aggregation.

Why use MongoDB?

e SQL was invented in the 70’s to store data
* MongoDB stores documents (or) objects

e Embedded documents and arrays reduce need for joins

Why will we use Mongodb?

* Semi-Structured Content Management

XML -> Tables

* For Project 2 we have done:

ltems -> User, Item, Category, Bid

XML Format

<Item ItemID="1043374545">
<Name>christopher radko | fritz n_ frosty sledding</Name>
<Category>Collectibles</Category>
<Category>Decorative & Holiday</Category=
<Category>Decorative by Brand</Category=>
<Category>Christopher Radko</Category=>
<Currently>$30.00</Currently>
<First Bid>$30.00</First _Bid>
<Number_of _Bids>0</Number_of_Bids>
<Bids/>
<Location>its a dry heat</lLocation=
<Country>USA</Country>
<Started>Dec-03-01 18:10:40</Started>
<Ends>Dec-13-01 18:10:40</Ends>
<Seller UserID="rulabula" Rating="1035"/>
<Description>brand new beautiful handmade european blown glass ornament
</Item>

JSON Format

"_id": "[@043374545",
"Name": "christopher radko | fritz n_ frosty sl
"Category": [
"Collectibles",
"Decorative & Holiday",
"Decorative by Brand",
"Christopher Radko"
1y
"Currently": 30.00,
“"First_Bid": 30.00,
“"Number_of_Bids": 0,
"Bids": null,
"Location": "its a dry heat",
“"Country": "USA",
"Started": "Dec-03-01 18:10:40",
"Ends": "Dec-13-01 18:10:40",
"Seller": {
" id": "rulabula",
" Rating": 1035
by
"Description": "brand new beautiful handmade eu
a snowman paired with a little girl bundled up in h
ornament is approximately 5_ tall and 4_ wide. bran
ature black radko gift box. PLEASE READ CAREFULLY!!!
2ar before shipping. the hold period will be a minim
shipping rate is dependent on both the weight of th
arge is $6 and will increase with distance and weigh
#ill apply for all USPS shipments if you cannot have
and I_will furnish quotes on availability. the BUY-I
laska and hawaii receive a credit of like value appl
utilize the feature. paypal is not accepted if you
puy it now feature is utilized. thank you for your u
See item description and Payment Instructions, or co
ct seller for more information."

},

Object-relational impedance mismatch

* A set of conceptual and technical difficulties that are often
encountered:

— when a relational database management system (RDBMS) is being served
by an application program (or multiple application programs) written in
an object-oriented programming language

* Objects or class definitions must be mapped to database tables
defined by relational schema.

MongoDB: No Impedance Mismatch

// your application code
class Foo { int x; string [] tags;}

// mongo document for Foo
{ x: 1, tags: [‘abc’, ' xyz'] }

When I say Think

Database Database

e Made up of Multiple Collections

e Created on-the-fly when referenced for the first time.

Think
Table

When I say

Collection

e Schema-less, and contains Documents
e Indexable by one/more keys.
e Created on-the-fly when referenced for the first time.

e Capped Collections: Fixed size, older records get dropped after
reaching the limit.

Think
Record/Row

When I say

Document

e Stored in a Collection
e Have id key —works like Primary keys in MySQL.
e Supported Relationships — Embedded (or) References

e Document storage in BSON (Binary form of JSON).

The Document Model

var post = {

‘ id’: Objectld(‘3432’),

‘author’: Objectld(2311’),

‘title’: ‘Introduction to MongoDB/,

‘body’: ‘MongoDB is an open sources.. |

‘timestamp’: Date('01-04-12’),

‘tags’: ['MongoDB’, ‘NoSQL’],

‘comments’: [{‘author’: Objectld(‘5331’),
‘date’: Date('02-04-12’),
‘text’: ‘Did you see..

‘upvotes’: 7}]

> db.posts.insert(post);

Find

// find posts which has ‘MongoDB’ tag.
> db.posts.find({tags: ‘MongoDB'});

// find posts by author’s comments.
> db.posts.find({‘comments.author’: Johnson’}).count();

// find posts written after 31t March.
> db.posts.find({“timestamp’: {‘Sgte’: Date('31-03-12")}});

Sgt, Slt, Sgte, Slte, Sne, Sall, Sin, Snin...

Find

Which fields?

db.foo.find(query, projection)

Which documents?

Find: Projection

> db.posts.find({}, {title:1})

{" id" : Objectld("5654381f37f63ffc4ebf1964"),
"title" : "NodedJS server" }

{" id" : Objectld("5654385c37f63ffc4ebf1965"),
"title" : "Introduction to MongoDB" }

Like
select title from posts

Empty projection like
select * from posts

Find

eQuery criteria
eSingle valuefield
eArray field
eSub-document /dot notation

PrOjectio n eField inclusion and exclusion

eSort

Cursor eLimit

oSkip

Update

> db.posts.update(
{" id" : Objectld("5654381f37f63ffc4ebf1964")},

{

title:"NodelS server"

1);

This will replace the document by {title:"NodelS server"}

Update: Change part of the document

> db.posts.update(
{" id" : Objectld("5654381f37f63ffc4ebf1964")},

{
SaddToSet: {tags:"JS"},
Sset: {title:"NodelS server"},
Sunset: { comments: 1}

});

Sset, Sunset
Spush, Spull, Spop, SaddToSet

Sinc, Sdecr, many more...

Update

Which
Document?

db.foo.update(query, update,options);

Collection Name

One?
Many?
Upsert?
What
Change?

Options:
{multi: true} — will change all found documents;
by default only first found will be updated
{upsert: true} — will insert document if it was not found

Remove

* db.collection.remove(<query>, <justOne>)

* db.items.remove({Currently: { Sgt: 20 } })

Aggregation

Collection

db.orders.aggregate([
$match stage——» { $match: { status: "A" } },

$group stage—» { $group: { _id: "$cust_id”,total: { $sum: "$amount” } } }
]

cust_id: "A123",
amount: 500,
status: "A"

cust_id: "A123",
amount: 250,
status: "A"

= amount: 25, ' =
{ $match status: "A" $group
cust_id: "B212", } (
amount: 200, _id: "B212",
status: "A" total: 200
) cust_id: "B12",)
amount: 200,
{ status: "A"
cust_id: "A123", }
amount: 300,
status: "D"

orders

Aggregation

e https://docs.mongodb.com/v3.0/applications/aggregation/

e https://www.safaribooksonline.com/blog/2013/06/21/aggregation

-in-mongodb/

Collection

db.orders.mapReduce(

map

—»

reduce ——»

query

—

output —»

{
cust_id: "A123",
amount: 5090,
status: "A"

}

{
cust_id: "A123",
amount: 250,
status: "A"

}

{
cust_id: "B212",
amount: 200,
status: "A"

}

{
cust_id: "A123",
amount: 309,
status: "D"

}

orders

query

MapReduce

query: { status: "A" },
out: "order_totals”

cust_id: "A123",
amount: 50,
status: "A"

cust_id: "A123",
amount: 250,

status: "A"

amount: 200,
status: "A"

{ tA123": [see, 250 1}

—

map

{ W 200)

reduce

function() { emit(this.cust_id, this.amount); 3},
function(key, values) { return Array.sum(values) },

_id: "A123",
value: 750

)

(
-id: "B212",

value: 200
}

order_totals

Acknowledgement

* Some of the slides in this presentation are taken from the slides
provided by the authors.

* Many of these slides are taken from ¢s145 course offered by
Stanford University.

