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Announcements

1. Start forming project teams.

– Maximum  Size of a team: 4

– It’s a team project so you are not allowed to work alone!

2. Project 1 (milestone 1) will be released soon (this weekend).

3. We will post a problem set this week. 

– Useful for Quiz 2

4. (Optional) workshops starting from Tomorrow
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Today’s Lecture

1. Single Table Query 

2. Multi Table Query

3. Aggregation & GROUP BY

4. Advanced SQL
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SINGLE-TABLE QUERIES
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What you will learn about in this section

1. The SFW query

2. Other useful operators: LIKE, DISTINCT, ORDER BY

3. ACTIVITY: Single-table queries
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SQL Query

• Basic form (there are many many more bells and whistles)

Call this a SFW query.

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>
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Simple SQL Query: Selection

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SELECT *
FROM Product
WHERE Category = ‘Gadgets’

Selection is the 
operation of filtering a 
relation’s tuples on some 
condition
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Simple SQL Query: Projection

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

PName Price Manufacturer
Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SELECT Pname, Price, Manufacturer
FROM Product
WHERE Category = ‘Gadgets’

Projection is the 
operation of producing 
an output table with 
tuples that have a subset 
of their prior attributes
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Notation

SELECT Pname, Price, Manufacturer
FROM Product
WHERE Category = ‘Gadgets’

Product(PName, Price, Category, Manfacturer)

Answer(PName, Price, Manfacturer)

Input schema

Output schema
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A Few Details

• SQL commands are case insensitive:
– Same: SELECT,  Select,  select

• Table or relation names may be case insensitive:
– Depends on OS. For Unix, it’s case sensitive.
– Different: Product,  product

• Values are not:
– Different: ‘Seattle’,  ‘seattle’

• Use single quotes for constants:
– ‘abc’  - yes
– “abc” - no

CSC 261, Spring 2018, UR 



LIKE: Simple String Pattern Matching

• s LIKE p:  pattern matching on 
strings

• p may contain two special symbols:
– %  = any sequence of characters

– _   = any single character

SELECT *
FROM Products
WHERE PName LIKE ‘%gizmo%’
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DISTINCT: Eliminating Duplicates

SELECT DISTINCT Category
FROM Product

Versus

SELECT Category
FROM Product

Category
Gadgets
Gadgets

Photography
Household

Category
Gadgets

Photography
Household
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ORDER BY: Sorting the Results

SELECT PName, Price, Manufacturer
FROM Product
WHERE Category=‘gizmo’ AND Price > 50
ORDER BY Price, PName

Ties are broken by the 
second attribute on the 
ORDER BY list, etc.

Ordering is ascending, 
unless you specify the 
DESC keyword.
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3. MULTI-TABLE QUERIES
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What you will learn about in this section

1. Foreign key constraints

2. Joins: basics

3. Joins: SQL semantics

4. ACTIVITY: Multi-table queries
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Foreign Key constraints

student_id alone is not 
a key- what is?

sid name gpa
101 Bob 3.2
123 Mary 3.8

student_id cid grade
123 564 A
123 537 A+

Students Enrolled

We say that student_id is a foreign key that refers to Students

Students(sid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

• Suppose we have the following schema:

• And we want to impose the following 
constraint:
– ‘Only bona fide students may enroll in 

courses’ i.e. a student must appear in the 
Students table to enroll in a class
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Declaring Foreign Keys

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

CREATE TABLE Enrolled(
student_id CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (student_id, cid),
FOREIGN KEY (student_id) REFERENCES Students(sid)

)
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Foreign Keys and update operations

Students(sid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

• What if we insert a tuple into Enrolled, but no 
corresponding student?

– INSERT is rejected (foreign keys are constraints)!
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Keys and Foreign Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Company
CName StockPrice Country

GizmoWork
s 25 USA

Canon 65 Japan

Hitachi 15 Japan

What is a 
foreign key 

vs. a primary 
key here?

Company:
Primary Key: CName
Foreign Key: None

Product:
Primary Key: PName
Foreign Key: Manufacturer references CName
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Joins

Ex: Find all products under $200 manufactured in 
Japan;
return their names and prices. 

SELECT PName, Price
FROM Product, Company
WHERE  Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country) Note: we will often omit 
attribute types in schema 
definitions for brevity, 
but assume attributes 
are always atomic types
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Joins

Ex: Find all products under $200 manufactured in 
Japan;
return their names and prices. 

SELECT PName, Price
FROM Product, Company
WHERE  Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

A join between tables 
returns all unique 
combinations of their tuples 
which meet some specified 
join condition

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)
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Joins

Several equivalent ways to write a basic join in SQL:

SELECT PName, Price
FROM Product, Company
WHERE  Manufacturer = 
CName

AND 
Country=‘Japan’

AND Price <= 200

SELECT PName, Price
FROM Product
JOIN   Company ON Manufacturer = Cname

AND Country=‘Japan’
WHERE Price <= 200

A few more later on…

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

CSC 261, Spring 2018, UR 



Joins

PName Price Category Manuf
Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product
Company

Cname Stock Country
GWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price
SingleTouch $149.99

SELECT PName, Price
FROM Product, Company
WHERE  Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200
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Tuple Variable Ambiguity in Multi-Table

SELECT DISTINCT name, address
FROM Person, Company
WHERE           worksfor = name

Person(name, address, worksfor)

Company(name, address)

Which “address” does 
this refer to?

Which “name”s??
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Person(name, address, worksfor)

Company(name, address)

SELECT DISTINCT Person.name, Person.address
FROM Person, Company
WHERE           Person.worksfor = Company.name

SELECT DISTINCT p.name, p.address
FROM Person p, Company c
WHERE           p.worksfor = c.name

Both equivalent 
ways to resolve 
variable 
ambiguity

Tuple Variable Ambiguity in Multi-Table
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