
CSC 261/461 – Database Systems
Lecture 3

Spring 2018

CSC 261, Spring 2018, UR 



Announcements

1. Start forming project teams.

– Maximum  Size of a team: 4

– It’s a team project so you are not allowed to work alone!

2. Project 1 (milestone 1) will be released soon (this weekend).

3. We will post a problem set this week. 

– Useful for Quiz 2

4. (Optional) workshops starting from Tomorrow

CSC 261, Spring 2018, UR 



Today’s Lecture

1. Single Table Query 

2. Multi Table Query

3. Aggregation & GROUP BY

4. Advanced SQL

CSC 261, Spring 2018, UR 



SINGLE-TABLE QUERIES

CSC 261, Spring 2018, UR 



What you will learn about in this section

1. The SFW query

2. Other useful operators: LIKE, DISTINCT, ORDER BY

3. ACTIVITY: Single-table queries

CSC 261, Spring 2018, UR 



SQL Query

• Basic form (there are many many more bells and whistles)

Call this a SFW query.

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

CSC 261, Spring 2018, UR 



Simple SQL Query: Selection

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SELECT *
FROM Product
WHERE Category = ‘Gadgets’

Selection is the 
operation of filtering a 
relation’s tuples on some 
condition

CSC 261, Spring 2018, UR 



Simple SQL Query: Projection

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

PName Price Manufacturer
Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SELECT Pname, Price, Manufacturer
FROM Product
WHERE Category = ‘Gadgets’

Projection is the 
operation of producing 
an output table with 
tuples that have a subset 
of their prior attributes

CSC 261, Spring 2018, UR 



Notation

SELECT Pname, Price, Manufacturer
FROM Product
WHERE Category = ‘Gadgets’

Product(PName, Price, Category, Manfacturer)

Answer(PName, Price, Manfacturer)

Input schema

Output schema

CSC 261, Spring 2018, UR 



A Few Details

• SQL commands are case insensitive:
– Same: SELECT,  Select,  select

• Table or relation names may be case insensitive:
– Depends on OS. For Unix, it’s case sensitive.
– Different: Product,  product

• Values are not:
– Different: ‘Seattle’,  ‘seattle’

• Use single quotes for constants:
– ‘abc’  - yes
– “abc” - no

CSC 261, Spring 2018, UR 



LIKE: Simple String Pattern Matching

• s LIKE p:  pattern matching on 
strings

• p may contain two special symbols:
– %  = any sequence of characters

– _   = any single character

SELECT *
FROM Products
WHERE PName LIKE ‘%gizmo%’

CSC 261, Spring 2018, UR 



DISTINCT: Eliminating Duplicates

SELECT DISTINCT Category
FROM Product

Versus

SELECT Category
FROM Product

Category
Gadgets
Gadgets

Photography
Household

Category
Gadgets

Photography
Household

CSC 261, Spring 2018, UR 



ORDER BY: Sorting the Results

SELECT PName, Price, Manufacturer
FROM Product
WHERE Category=‘gizmo’ AND Price > 50
ORDER BY Price, PName

Ties are broken by the 
second attribute on the 
ORDER BY list, etc.

Ordering is ascending, 
unless you specify the 
DESC keyword.

CSC 261, Spring 2018, UR 



3. MULTI-TABLE QUERIES

CSC 261, Spring 2018, UR 



What you will learn about in this section

1. Foreign key constraints

2. Joins: basics

3. Joins: SQL semantics

4. ACTIVITY: Multi-table queries

CSC 261, Spring 2018, UR 



Foreign Key constraints

student_id alone is not 
a key- what is?

sid name gpa
101 Bob 3.2
123 Mary 3.8

student_id cid grade
123 564 A
123 537 A+

Students Enrolled

We say that student_id is a foreign key that refers to Students

Students(sid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

• Suppose we have the following schema:

• And we want to impose the following 
constraint:
– ‘Only bona fide students may enroll in 

courses’ i.e. a student must appear in the 
Students table to enroll in a class

CSC 261, Spring 2018, UR 



Declaring Foreign Keys

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

CREATE TABLE Enrolled(
student_id CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (student_id, cid),
FOREIGN KEY (student_id) REFERENCES Students(sid)

)

CSC 261, Spring 2018, UR 



Foreign Keys and update operations

Students(sid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

• What if we insert a tuple into Enrolled, but no 
corresponding student?

– INSERT is rejected (foreign keys are constraints)!

CSC 261, Spring 2018, UR 



Keys and Foreign Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Company
CName StockPrice Country

GizmoWork
s 25 USA

Canon 65 Japan

Hitachi 15 Japan

What is a 
foreign key 

vs. a primary 
key here?

Company:
Primary Key: CName
Foreign Key: None

Product:
Primary Key: PName
Foreign Key: Manufacturer references CName

CSC 261, Spring 2018, UR 



Joins

Ex: Find all products under $200 manufactured in 
Japan;
return their names and prices. 

SELECT PName, Price
FROM Product, Company
WHERE  Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country) Note: we will often omit 
attribute types in schema 
definitions for brevity, 
but assume attributes 
are always atomic types

CSC 261, Spring 2018, UR 



Joins

Ex: Find all products under $200 manufactured in 
Japan;
return their names and prices. 

SELECT PName, Price
FROM Product, Company
WHERE  Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

A join between tables 
returns all unique 
combinations of their tuples 
which meet some specified 
join condition

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

CSC 261, Spring 2018, UR 



Joins

Several equivalent ways to write a basic join in SQL:

SELECT PName, Price
FROM Product, Company
WHERE  Manufacturer = 
CName

AND 
Country=‘Japan’

AND Price <= 200

SELECT PName, Price
FROM Product
JOIN   Company ON Manufacturer = Cname

AND Country=‘Japan’
WHERE Price <= 200

A few more later on…

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

CSC 261, Spring 2018, UR 



Joins

PName Price Category Manuf
Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product
Company

Cname Stock Country
GWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price
SingleTouch $149.99

SELECT PName, Price
FROM Product, Company
WHERE  Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

CSC 261, Spring 2018, UR 



Tuple Variable Ambiguity in Multi-Table

SELECT DISTINCT name, address
FROM Person, Company
WHERE           worksfor = name

Person(name, address, worksfor)

Company(name, address)

Which “address” does 
this refer to?

Which “name”s??

CSC 261, Spring 2018, UR 



Person(name, address, worksfor)

Company(name, address)

SELECT DISTINCT Person.name, Person.address
FROM Person, Company
WHERE           Person.worksfor = Company.name

SELECT DISTINCT p.name, p.address
FROM Person p, Company c
WHERE           p.worksfor = c.name

Both equivalent 
ways to resolve 
variable 
ambiguity

Tuple Variable Ambiguity in Multi-Table

CSC 261, Spring 2018, UR 



Acknowledgement

• Some of the slides in this presentation are taken from the 
slides provided by the authors. 

• Many of these slides are taken from cs145 course offered by
Stanford University.

• Thanks to YouTube, especially to Dr. Daniel Soper for his 
useful videos.

CSC 261, Spring 2018, UR 


