
CSC 261/461 – Database Systems
Lecture 3 (Study at Home)

Spring 2018

CSC 261, Spring 2018, UR

Study at Home

• We will cover this slides in class too

• But, the pace would be faster

• So, please study these slides at home

• Ask question when I present if you have any doubt.

CSC 261, Spring 2018, UR

Meaning (Semantics) of SQL Queries

SELECT x1.a1, x1.a2, …, xn.ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions(x1,…, xn)

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions(x1,…, xn)

then Answer = Answer È {(x1.a1, x1.a2, …, xn.ak)}
return Answer

Almost never the fastest way
to compute it!

Note: this is a multiset union

CSC 261, Spring 2018, UR

An example of SQL semantics

SELECT R.A
FROM R, S
WHERE R.A = S.B

A
1
3

B C
2 3
3 4
3 5

A B C
1 2 3
1 3 4
1 3 5
3 2 3
3 3 4
3 3 5

Cross
Product

A B C
3 3 4
3 3 5

A
3
3

Apply
ProjectionApply

Selections /
Conditions

Output

CSC 261, Spring 2018, UR

Note the semantics of a join

SELECT R.A
FROM R, S
WHERE R.A = S.B

Recall: Cross product (A X B) is the set of all

unique tuples in A,B

Ex: {a,b,c} X {1,2}

= {(a,1), (a,2), (b,1), (b,2), (c,1),

(c,2)}

=

Filtering!

= Returning only some
attributes

Remembering this order is critical to understanding the

output of certain queries (see later on…)

1. Take cross product:
! = #×%

2. Apply selections / conditions:
& = ',) ∈ !	 	'. - == '. .}

3. Apply projections to get final output:
0 = (2. -,)	45'	2 ∈ &

CSC 261, Spring 2018, UR

Note: we say “semantics” not “execution order”

• The preceding slides show what a join means

• Not actually how the DBMS executes it under the covers

CSC 261, Spring 2018, UR

A Subtlety about Joins

Find all countries that manufacture some product
in the ‘Gadgets’ category.

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category=‘Gadgets’

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

CSC 261, Spring 2018, UR

A subtlety about Joins

PName Price Category Manuf

Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product Company
Cname Stock Country

GWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Country
?
?

SELECT Country
FROM Product, Company
WHERE Manufacturer=Cname

AND Category=‘Gadgets’

What is the problem ?
What’s the solution ?

CSC 261, Spring 2018, UR

1. SET OPERATORS & NESTED QUERIES

CSC 261, Spring 2018, UR

What you will learn about in this section

1. Multiset operators in SQL

2. Nested queries

3. ACTIVITY: Set operator subtleties

CSC 261, Spring 2018, UR

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

What does it compute?

A

1

2

3

4

5

A A

1

4

7

10

TABLE R TABLE TTABLE S

CSC 261, Spring 2018, UR

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

Computes
R Ç (S È T)

Or
(R Ç S) È (R Ç T)

But what if S = f?

S T

R

Go back to the semantics!

CSC 261, Spring 2018, UR

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

• Recall the semantics!
1. Take cross-product
2. Apply selections / conditions
3. Apply projection

• If S = {}, then the cross product of R, S, T = {}, and the query result = {}!

Must consider semantics here.
Are there more explicit way to do set operations like this?

CSC 261, Spring 2018, UR

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

What does this look like in Python?

• Semantics:
1. Take cross-product

2. Apply selections / conditions

3. Apply projection

Joins / cross-products are just nested for
loops (in simplest implementation)!

If-then
statements!

R Ç (S È T)

S T

R

CSC 261, Spring 2018, UR

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

What does this look like in Python?

R Ç (S È T)

S T

R

output = {}

for r in R:
for s in S:

for t in T:
if r[‘A’] == s[‘A’] or r[‘A’] == t[‘A’]:

output.add(r[‘A’])
return list(output)

Can you see now what happens if S = []?

CSC 261, Spring 2018, UR

MULTISET OPERATIONS IN SQL

CSC 261, Spring 2018, UR

UNION

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

!. #	 	!. # = &. # ∪ !. #	 !. # = (. #}
Why aren’t
there
duplicates?

What if we want
duplicates?

CSC 261, Spring 2018, UR

UNION ALL

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION ALL
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

!. #	 	!. # = &. # ∪ !. #	 !. # = (. #}

ALL indicates
Multiset
operations

CSC 261, Spring 2018, UR

EXCEPT

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

!. #	 	!. # = &. # \{!. #|!. # = *. #}

CSC 261, Spring 2018, UR

NESTED QUERIES

CSC 261, Spring 2018, UR

Nested queries: Sub-queries Returning Relations

SELECT DISTINCT c.city
FROM Company c
WHERE c.name IN (

SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.product = pr.name

AND p.buyer = ‘Joe Blow‘)

“Cities where one
can find
companies that
manufacture
products bought
by Joe Blow”

Company(name, city)
Product(name, maker)
Purchase(id, product, buyer)

Another
example
:

CSC 261, Spring 2018, UR

Subqueries Returning Relations

SELECT name
FROM Product
WHERE price > ALL(

SELECT price
FROM Product
WHERE maker = ‘Gizmo-Works’)

Product(name, price, category, maker)

You can also use operations of the form:
• s > ALL R
• s < ANY R
• EXISTS R

Find products that
are more expensive
than all those
produced by
“Gizmo-Works”

Ex:

ANY and ALL not supported by
SQLite.

CSC 261, Spring 2018, UR

Subqueries Returning Relations

SELECT p1.name
FROM Product p1
WHERE p1.maker = ‘Gizmo-Works’

AND EXISTS(
SELECT p2.name

FROM Product p2
WHERE p2.maker <> ‘Gizmo-Works’

AND p1.name = p2.name)

Product(name, price, category, maker)

You can also use operations of the form:
• s > ALL R
• s < ANY R
• EXISTS R

Find ‘copycat’
products, i.e.
products made by
competitors with
the same names as
products made by
“Gizmo-Works”

Ex:

<> means
!=

CSC 261, Spring 2018, UR

Nested queries as alternatives to INTERSECT and
EXCEPT

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE EXISTS(

SELECT *
FROM S

WHERE R.A=S.A AND R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE NOT EXISTS(

SELECT *
FROM S
WHERE R.A=S.A AND R.B=S.B)

(SELECT R.A, R.B
FROM R)

EXCEPT
(SELECT S.A, S.B
FROM S)

MYSQL does not support INTERSECT and EXCEPT operators
CSC 261, Spring 2018, UR

Correlated Queries

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(

SELECT year
FROM Movie
WHERE title = m.title)

Movie(title, year, director, length)
Find movies whose
title appears more
than once.

Note the scoping
of the variables!

CSC 261, Spring 2018, UR

Basic SQL Summary

• SQL provides a high-level declarative language for
manipulating data (DML)

• The workhorse is the SFW block

• Set operators are powerful but have some subtleties

• Powerful, nested queries also allowed.

CSC 261, Spring 2018, UR

2. AGGREGATION & GROUP BY

CSC 261, Spring 2018, UR

What you will learn about in this section

1. Aggregation operators

2. GROUP BY

3. GROUP BY: with HAVING, semantics

CSC 261, Spring 2018, UR

Aggregation

SELECT COUNT(*)
FROM Product
WHERE year > 1995

Except COUNT, all aggregations
apply to a single attribute

SELECT AVG(price)
FROM Product
WHERE maker = “Toyota”

• SQL supports several aggregation operations:
• SUM, COUNT, MIN, MAX, AVG

CSC 261, Spring 2018, UR

• COUNT applies to duplicates, unless otherwise stated

SELECT COUNT(category)
FROM Product
WHERE year > 1995

Note: Same as COUNT(*).
Why?

We probably want:

SELECT COUNT(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation: COUNT

CSC 261, Spring 2018, UR

Purchase(product, date, price, quantity)

More Examples

SELECT SUM(price * quantity)
FROM Purchase

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do these mean?

CSC 261, Spring 2018, UR

Simple Aggregations

Purchase
Product Date Price Quantity

bagel 10/21 1 20

banana 10/3 0.5 10

banana 10/10 1 10

bagel 10/25 1.50 20

SELECT SUM(price *
quantity)
FROM Purchase
WHERE product = ‘bagel’

50 (= 1*20 + 1.50*20)

CSC 261, Spring 2018, UR

Grouping and Aggregation

SELECT product,
SUM(price * quantity) AS TotalSales

FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Find total sales
after 10/1/2005
per product.

Purchase(product, date, price, quantity)

CSC 261, Spring 2018, UR

Grouping and Aggregation

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and aggregates

Semantics of the query:

CSC 261, Spring 2018, UR

1. Compute the FROM and WHERE clauses

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

FROM

CSC 261, Spring 2018, UR

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10
Banana 10/10 1 10

2. Group by the attributes in the GROUP BY

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

CSC 261, Spring 2018, UR

3. Compute the SELECT clause: grouped attributes
and aggregates

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

CSC 261, Spring 2018, UR

HAVING Clause

Same query as
before, except
that we consider
only products that
have more than
100 buyers

HAVING clauses contains conditions on aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas WHERE clauses condition on individual tuples…

CSC 261, Spring 2018, UR

General form of Grouping and Aggregation

• S = Can ONLY contain attributes a1,…,ak and/or aggregates over other
attributes

• C1 = is any condition on the attributes in R1,…,Rn

• C2 = is any condition on the aggregate expressions

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Why?

CSC 261, Spring 2018, UR

General form of Grouping and Aggregation

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation steps:

1. Evaluate FROM-WHERE: apply condition C1 on the
attributes in R1,…,Rn

2. GROUP BY the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)

4. Compute aggregates in S and return the result

CSC 261, Spring 2018, UR

Group-by vs. Nested Query

• Find authors who wrote ³ 10
documents:

• Attempt 1: with nested queriesSELECT DISTINCT Author.name
FROM Author
WHERE COUNT(

SELECT Wrote.url
FROM Wrote
WHERE Author.login = Wrote.login) > 10

Author(login, name)
Wrote(login, url)

This is
SQL by
a novice

CSC 261, Spring 2018, UR

Group-by v.s. Nested Query

• Find all authors who wrote at least 10 documents:
• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login = Wrote.login
GROUP BY Author.name
HAVING COUNT(Wrote.url) > 10

No need for DISTINCT: automatically from GROUP BY

This is
SQL by
an expert

CSC 261, Spring 2018, UR

Group-by vs. Nested Query

Which way is more efficient?

• Attempt #1- With nested: How many times do we do a SFW
query over all of the Wrote relations?

• Attempt #2- With group-by: How about when written this
way?

With GROUP BY can be much more efficient!

CSC 261, Spring 2018, UR

Acknowledgement

• Some of the slides in this presentation are taken from the
slides provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

• Thanks to YouTube, especially to Dr. Daniel Soper for his
useful videos.

CSC 261, Spring 2018, UR

