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Study at Home

• We will cover this slides in class too

• But, the pace would be faster

• So, please study these slides at home

• Ask question when I present if you have any doubt.
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Meaning (Semantics) of SQL Queries

SELECT x1.a1, x1.a2, …, xn.ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions(x1,…, xn)

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions(x1,…, xn)

then Answer = Answer È {(x1.a1, x1.a2, …, xn.ak)}
return Answer

Almost never the fastest way 
to compute it!

Note: this is a multiset union
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An example of SQL semantics

SELECT R.A
FROM R, S
WHERE R.A = S.B

A
1
3

B C
2 3
3 4
3 5

A B C
1 2 3
1 3 4
1 3 5
3 2 3
3 3 4
3 3 5

Cross 
Product

A B C
3 3 4
3 3 5

A
3
3

Apply 
ProjectionApply 

Selections / 
Conditions

Output
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Note the semantics of a join

SELECT R.A
FROM R, S
WHERE R.A = S.B

Recall: Cross product (A X B) is the set of all 

unique tuples in A,B

Ex: {a,b,c} X {1,2} 

= {(a,1), (a,2), (b,1), (b,2), (c,1), 

(c,2)}

= 

Filtering!

= Returning only some
attributes

Remembering this order is critical to understanding the 

output of certain queries (see later on…)

1. Take cross product:
! = #×%

2. Apply selections / conditions:
& = ', ) ∈ !	 	'. - == '. .}

3. Apply projections to get final output:
0 = (2. -, )	45'	2 ∈ &
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Note: we say “semantics” not “execution order”

• The preceding slides show what a join means

• Not actually how the DBMS executes it under the covers
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A Subtlety about Joins

Find all countries that manufacture some product 
in the ‘Gadgets’ category.

SELECT Country
FROM Product, Company
WHERE  Manufacturer=CName AND Category=‘Gadgets’

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)
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A subtlety about Joins

PName Price Category Manuf

Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product Company
Cname Stock Country

GWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Country
?
?

SELECT Country
FROM Product, Company
WHERE  Manufacturer=Cname

AND Category=‘Gadgets’

What is the problem ?
What’s the solution ?
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1. SET OPERATORS & NESTED QUERIES

CSC 261, Spring 2018, UR 



What you will learn about in this section

1. Multiset operators in SQL

2. Nested queries

3. ACTIVITY: Set operator subtleties
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SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

What does it compute?

A

1

2

3

4

5

A A

1

4

7

10

TABLE R TABLE TTABLE S
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SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

Computes 
R Ç (S È T)  

Or
(R Ç S)  È (R Ç T)

But what if S = f?

S T

R

Go back to the semantics!
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SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

• Recall the semantics!
1. Take cross-product
2. Apply selections / conditions
3. Apply projection

• If S = {}, then the cross product of R, S, T = {}, and the query result = {}!

Must consider semantics here.  
Are there more explicit way to do set operations like this?
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SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

What does this look like in Python?

• Semantics:
1. Take cross-product

2. Apply selections / conditions

3. Apply projection

Joins / cross-products are just nested for 
loops (in simplest implementation)!

If-then 
statements!

R Ç (S È T)

S T

R
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SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

What does this look like in Python?

R Ç (S È T)

S T

R

output = {}

for r in R:
for s in S:

for t in T:
if r[‘A’] == s[‘A’] or r[‘A’] == t[‘A’]:

output.add(r[‘A’])
return list(output)

Can you see now what happens if S = []?
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MULTISET OPERATIONS IN SQL

CSC 261, Spring 2018, UR 



UNION

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

!. #	 	!. # = &. # ∪ !. #	 !. # = (. #}
Why aren’t 
there 
duplicates?

What if we want 
duplicates?
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UNION ALL

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION ALL
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

!. #	 	!. # = &. # ∪ !. #	 !. # = (. #}

ALL indicates 
Multiset
operations
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EXCEPT

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

!. #	 	!. # = &. # \{!. #|!. # = *. #}
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NESTED QUERIES
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Nested queries: Sub-queries Returning Relations

SELECT DISTINCT c.city
FROM Company c
WHERE c.name IN (

SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.product = pr.name

AND p.buyer = ‘Joe Blow‘)

“Cities where one   
can find 
companies that 
manufacture 
products bought 
by Joe Blow”

Company(name, city)
Product(name, maker)
Purchase(id, product, buyer)

Another 
example
:
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Subqueries Returning Relations

SELECT name
FROM Product
WHERE price > ALL(

SELECT price
FROM Product
WHERE maker = ‘Gizmo-Works’)

Product(name, price, category, maker)

You can also use operations of the form:    
• s > ALL R
• s < ANY R
• EXISTS R

Find products that 
are more expensive 
than all those 
produced by 
“Gizmo-Works”

Ex:

ANY and ALL not supported by 
SQLite.
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Subqueries Returning Relations

SELECT p1.name
FROM Product p1
WHERE p1.maker = ‘Gizmo-Works’

AND EXISTS(
SELECT p2.name

FROM Product p2
WHERE p2.maker <> ‘Gizmo-Works’

AND p1.name = p2.name)

Product(name, price, category, maker)

You can also use operations of the form:    
• s > ALL R
• s < ANY R
• EXISTS R

Find ‘copycat’ 
products, i.e. 
products made by 
competitors with 
the same names as 
products made by 
“Gizmo-Works”

Ex:

<> means 
!=
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Nested queries as alternatives to INTERSECT and 
EXCEPT

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE EXISTS(

SELECT *
FROM S

WHERE R.A=S.A AND R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE NOT EXISTS(

SELECT *
FROM S
WHERE R.A=S.A AND R.B=S.B)

(SELECT R.A, R.B
FROM R)

EXCEPT
(SELECT S.A, S.B
FROM S)

MYSQL does not support INTERSECT and EXCEPT operators
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Correlated Queries

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(

SELECT year
FROM Movie
WHERE title =  m.title)

Movie(title, year, director, length)
Find movies whose 
title appears more 
than once.

Note the scoping 
of the variables!
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Basic SQL Summary

• SQL provides a high-level declarative language for 
manipulating data (DML)

• The workhorse is the SFW block

• Set operators are powerful but have some subtleties

• Powerful, nested queries also allowed.
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2. AGGREGATION & GROUP BY
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What you will learn about in this section

1. Aggregation operators

2. GROUP BY

3. GROUP BY: with HAVING, semantics
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Aggregation

SELECT COUNT(*)
FROM Product
WHERE year > 1995

Except COUNT, all aggregations 
apply to a single attribute

SELECT AVG(price)
FROM Product
WHERE maker = “Toyota”

• SQL supports several aggregation operations:
• SUM, COUNT, MIN, MAX, AVG
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• COUNT applies to duplicates, unless otherwise stated

SELECT COUNT(category) 
FROM Product
WHERE year > 1995

Note: Same as COUNT(*).  
Why?

We probably want:

SELECT COUNT(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation: COUNT
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Purchase(product, date, price, quantity)

More Examples

SELECT SUM(price * quantity)
FROM Purchase

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do these mean?
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Simple Aggregations

Purchase
Product Date Price Quantity

bagel 10/21 1 20

banana 10/3 0.5 10

banana 10/10 1 10

bagel 10/25 1.50 20

SELECT SUM(price * 
quantity)
FROM Purchase
WHERE product = ‘bagel’

50  (= 1*20 + 1.50*20)
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Grouping and Aggregation

SELECT product,
SUM(price * quantity) AS TotalSales

FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Find total sales 
after 10/1/2005 
per product.

Purchase(product, date, price, quantity)
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Grouping and Aggregation

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and aggregates

Semantics of the query:
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1. Compute the FROM and WHERE clauses

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

SELECT   product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

FROM
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Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10
Banana 10/10 1 10

2. Group by the attributes in the GROUP BY

SELECT   product, SUM(price*quantity) AS TotalSales
FROM     Purchase
WHERE    date > ‘10/1/2005’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10
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3. Compute the SELECT clause: grouped attributes 
and aggregates

SELECT product, SUM(price*quantity) AS TotalSales
FROM     Purchase
WHERE    date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10
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HAVING Clause

Same query as 
before, except 
that we consider 
only products that 
have more than
100 buyers

HAVING clauses contains conditions on aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas WHERE clauses condition on individual tuples…
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General form of Grouping and Aggregation

• S = Can ONLY contain attributes a1,…,ak and/or aggregates over other 
attributes

• C1 = is any condition on the attributes in R1,…,Rn

• C2 = is any condition on the aggregate expressions

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Why?
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General form of Grouping and Aggregation

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation steps:

1. Evaluate FROM-WHERE: apply condition C1 on the  
attributes in R1,…,Rn

2. GROUP BY the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)

4. Compute aggregates in S and return the result
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Group-by vs. Nested Query

• Find authors who wrote ³ 10 
documents:

• Attempt 1: with nested queriesSELECT DISTINCT Author.name
FROM   Author
WHERE  COUNT(

SELECT Wrote.url
FROM Wrote
WHERE Author.login = Wrote.login) > 10

Author(login, name)
Wrote(login, url)

This is
SQL by
a novice
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Group-by v.s. Nested Query

• Find all authors who wrote at least 10 documents:
• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM   Author, Wrote
WHERE Author.login = Wrote.login
GROUP BY Author.name
HAVING   COUNT(Wrote.url) > 10

No need for DISTINCT: automatically from GROUP BY

This is
SQL  by
an expert
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Group-by vs. Nested Query

Which way is more efficient?

• Attempt #1- With nested: How many times do we do a SFW 
query over all of the Wrote relations?

• Attempt #2- With group-by: How about when written this 
way?

With GROUP BY can be much more efficient!
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