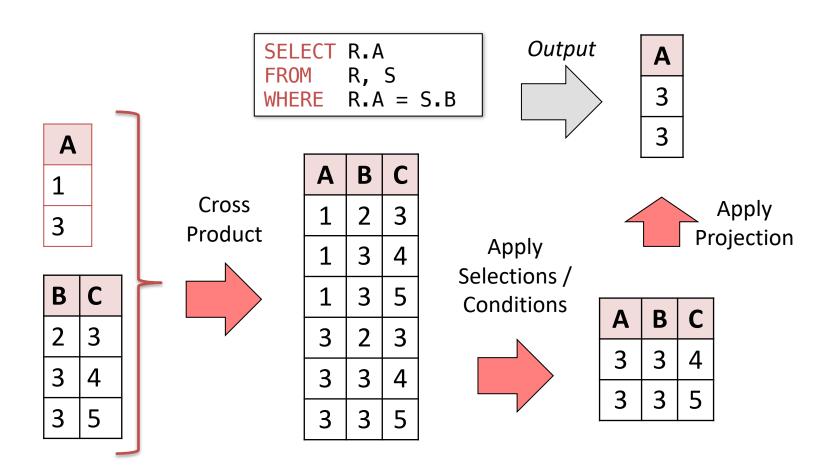
CSC 261/461 – Database Systems Lecture 3 (Study at Home)

Spring 2018

Study at Home

- We will cover this slides in class too
- But, the pace would be faster
- So, please study these slides at home
- Ask question when I present if you have any doubt.

Meaning (Semantics) of SQL Queries


Almost never the *fastest* way to compute it!

```
Answer = {}
for x_1 in R_1 do
for x_2 in R_2 do
....

for x_n in R_n do
if Conditions(x_1,...,x_n)
then Answer = Answer (x_1, x_1, x_2, ..., x_n, x_n, x_n, x_n)
return Answer
```

Note: this is a multiset union

An example of SQL semantics

Note the *semantics* of a join

SELECT R.A FROM R, S WHERE R.A = S.B

1. Take cross product:

$$X = R \times S$$

Recall: Cross product (A X B) is the set of all unique tuples in A,B

2. Apply **selections / conditions**:

$$Y = \{(r, s) \in X \mid r.A == r.B\}$$

Filtering!

3. Apply **projections** to get final output:

$$Z = (y.A,) for y \in Y$$

= Returning only *some* attributes

Remembering this order is critical to understanding the output of certain queries (see later on...)

Note: we say "semantics" not "execution order"

- The preceding slides show what a join means
- Not actually how the DBMS executes it under the covers

A Subtlety about Joins

```
Product(<u>PName</u>, Price, Category, Manufacturer)
Company(<u>CName</u>, StockPrice, Country)
```

Find all countries that manufacture some product in the 'Gadgets' category.

```
SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category='Gadgets'
```

A subtlety about Joins

Product

PName Price Manuf Category \$19 **GWorks** Gizmo Gadgets \$29 **GWorks** Powergizmo Gadgets \$149 SingleTouch Photography Canon MultiTouch \$203 Household Hitachi

Company

Cname	Stock	Country
GWorks	25	USA
Canon	65	Japan
Hitachi	15	Japan

SELECT Country

FROM Product, Company

WHERE Manufacturer=Cname

AND Category='Gadgets'

Country

?

What is the problem? What's the solution?

1. SET OPERATORS & NESTED QUERIES

What you will learn about in this section

1. Multiset operators in SQL

2. Nested queries

3. ACTIVITY: Set operator subtleties

An Unintuitive Query

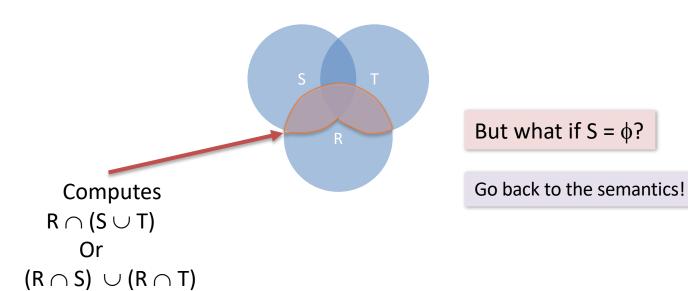
 TABLE S
 TABLE T

 A
 A
 A

 1
 1
 1

 2
 4
 4

 3
 7
 10


 5
 10
 10

SELECT DISTINCT R.A FROM R, S, T WHERE R.A=S.A OR R.A=T.A

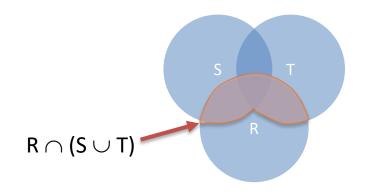
What does it compute?

An Unintuitive Query

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

```
SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A
```


- Recall the semantics!
 - 1. Take <u>cross-product</u>
 - 2. Apply selections / conditions
 - 3. Apply projection
- If S = {}, then the cross product of R, S, T = {}, and the query result = {}!

Must consider semantics here.

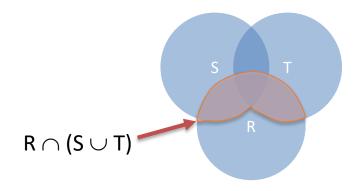
Are there more explicit way to do set operations like this?

What does this look like in Python?

SELECT DISTINCT R.A FROM R, S, T WHERE R.A=S.A OR R.A=T.A

- Semantics:
 - 1. Take <u>cross-product</u>

2. Apply selections / conditions


Joins / cross-products are just nested for loops (in simplest implementation)!

If-then statements!

3. Apply projection

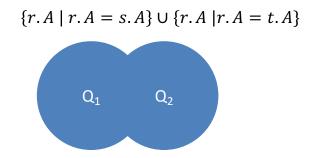
What does this look like in Python?

```
SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A
```



```
output = {}

for r in R:
    for s in S:
        for t in T:
            if r['A'] == s['A'] or r['A'] == t['A']:
                output.add(r['A'])

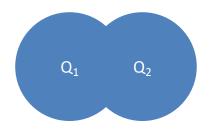

return list(output)
```

Can you see now what happens if S = []?

MULTISET OPERATIONS IN SQL

UNION

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION
SELECT R.A
FROM R, T
WHERE R.A=T.A


Why aren't there duplicates?

What if we want duplicates?

UNION ALL

```
SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION ALL
SELECT R.A
FROM R, T
WHERE R.A=T.A
```

$$\{r.A \mid r.A = s.A\} \cup \{r.A \mid r.A = t.A\}$$

ALL indicates Multiset operations

EXCEPT

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A

$$\{r.A \mid r.A = s.A\} \setminus \{r.A \mid r.A = t.A\}$$

$$Q_1 \qquad Q_2$$

NESTED QUERIES

Nested queries: Sub-queries Returning Relations

```
Another example:
```

```
Company(name, city)
Product(name, maker)
Purchase(id, product, buyer)
```

```
SELECT DISTINCT c.city
FROM Company c
WHERE c.name IN (
    SELECT pr.maker
    FROM Purchase p, Product pr
    WHERE p.product = pr.name
    AND p.buyer = 'Joe Blow')
```

"Cities where one can find companies that manufacture products bought by Joe Blow"

Subqueries Returning Relations

You can also use operations of the form:

ANY and ALL not supported by SQLite.

- s > ALL R
- s < ANY R
- EXISTS R

```
Ex: Product(name, price, category, maker)
```

```
SELECT name
FROM Product
WHERE price > ALL(
    SELECT price
    FROM Product
    WHERE maker = 'Gizmo-Works')
```

Find products that are more expensive than all those produced by "Gizmo-Works"

Subqueries Returning Relations

You can also use operations of the form:

- s > ALL R
- s < ANY R
- EXISTS R

Ex: Product(name, price, category, maker)

```
SELECT p1.name
FROM Product p1
WHERE p1.maker = 'Gizmo-Works'
AND EXISTS(
     SELECT p2.name
     FROM Product p2
WHERE p2.maker <> 'Gizmo-Works'
     AND p1.name = p2.name)
```

<> means != Find 'copycat' products, i.e. products made by competitors with the same names as products made by "Gizmo-Works"

Nested queries as alternatives to INTERSECT and EXCEPT

```
(SELECT R.A, R.B FROM R)
INTERSECT
(SELECT S.A, S.B FROM S)
```



```
SELECT R.A, R.B
FROM R
WHERE EXISTS(
SELECT *
FROM S
WHERE R.A=S.A AND R.B=S.B)
```

```
(SELECT R.A, R.B FROM R)
EXCEPT
(SELECT S.A, S.B FROM S)
```



```
SELECT R.A, R.B
FROM R
WHERE NOT EXISTS(
SELECT *
FROM S
WHERE R.A=S.A AND R.B=S.B)
```

MYSQL does not support INTERSECT and EXCEPT operators

Correlated Queries

```
Movie(<u>title</u>, <u>year</u>, director, length)
```

```
SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(
SELECT year
FROM Movie
WHERE title = m.title
```

Find movies whose title appears more than once.

Note the scoping of the variables!

Basic SQL Summary

- SQL provides a high-level declarative language for manipulating data (DML)
- The workhorse is the SFW block
- Set operators are powerful but have some subtleties
- Powerful, nested queries also allowed.

2. AGGREGATION & GROUP BY

What you will learn about in this section

1. Aggregation operators

2. GROUP BY

3. GROUP BY: with HAVING, semantics

Aggregation

```
SELECT AVG(price)
FROM Product
WHERE maker = "Toyota"
```

```
SELECT COUNT(*)
FROM Product
WHERE year > 1995
```

- SQL supports several aggregation operations:
 - SUM, COUNT, MIN, MAX, AVG

Except COUNT, all aggregations apply to a single attribute

Aggregation: COUNT

COUNT applies to duplicates, unless otherwise stated

```
SELECT COUNT(category)
FROM Product
WHERE year > 1995
```

Note: Same as COUNT(*). Why?

We probably want:

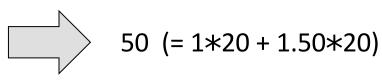
```
SELECT COUNT(DISTINCT category)
FROM Product
WHERE year > 1995
```

More Examples

Purchase(product, date, price, quantity)

```
SELECT SUM(price * quantity)
FROM Purchase
```

What do these mean?


```
SELECT SUM(price * quantity)
FROM Purchase
WHERE product = 'bagel'
```

Simple Aggregations

Purchase

Product	Date	Price	Quantity
bagel	10/21	1	20
banana	10/3	0.5	10
banana	10/10	1	10
bagel	10/25	1.50	20

```
SELECT SUM(price *
quantity)
FROM Purchase
WHERE product = 'bagel'
```


Grouping and Aggregation

Purchase(product, date, price, quantity)

```
SELECT product,
SUM(price * quantity) AS TotalSales
Find total sales
after 10/1/2005
Purchase
WHERE date > '10/1/2005'
GROUP BY product

Find total sales
after 10/1/2005
```

Let's see what this means...

Grouping and Aggregation

Semantics of the query:

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the **SELECT** clause: grouped attributes and aggregates

1. Compute the FROM and WHERE clauses

SELECT product, SUM(price*quantity) AS TotalSales

FROM Purchase

WHERE date > '10/1/2005'

GROUP BY product

Product	Date	Price	Quantity
Bagel	10/21	1	20
Bagel	10/25	1.50	20
Banana	10/3	0.5	10
Banana	10/10	1	10

2. Group by the attributes in the GROUP BY

SELECT product, SUM(price*quantity) AS TotalSales

FROM Purchase

WHERE date > '10/1/2005'

GROUP BY product

Product	Date	Price	Quantity
Bagel	10/21	1	20
Bagel	10/25	1.50	20
Banana	10/3	0.5	10
Banana	10/10	1	10

Product	Date	Price	Quantity
Dogal	10/21	1	20
Bagel	10/25	1.50	20
Domono	10/3	0.5	10
Banana	10/10	1	10

3. Compute the SELECT clause: grouped attributes and aggregates

SELECT product, SUM(price*quantity) AS TotalSales

FROM Purchase

WHERE date > '10/1/2005'

GROUP BY product

Product	Date	Price	Quantity
Dogal	10/21	1	20
Bagel	10/25	1.50	20
Danama	10/3	0.5	10
Banana	10/10	1	10

Product	TotalSales
Bagel	50
Banana	15

HAVING Clause

SELECT product, SUM(price*quantity)

FROM Purchase

WHERE date > '10/1/2005'

GROUP BY product

HAVING SUM(quantity) > 100

HAVING clauses contains conditions on aggregates

Whereas WHERE clauses condition on individual tuples...

Same query as before, except that we consider only products that have more than 100 buyers

General form of Grouping and Aggregation

SELECT	S
FROM	R_1, \dots, R_n
WHERE	C_1^{T}
GROUP BY	a ₁ ,,a _k
HAVING	C_2^-

Why?

- S = Can ONLY contain attributes a₁,...,a_k and/or aggregates over other attributes
- C_i = is any condition on the attributes in $R_i,...,R_n$
- C_2 = is any condition on the aggregate expressions

General form of Grouping and Aggregation

SELECT	S
FROM	R_1, \dots, R_n
WHERE	C_1
GROUP BY	a ₁ ,,a _k
HAVING	C_2

Evaluation steps:

- 1. Evaluate FROM-WHERE: apply condition C_1 on the attributes in $R_1,...,R_n$
- 2. GROUP BY the attributes $a_1,...,a_k$
- 3. Apply condition C_2 to each group (may have aggregates)
- 4. Compute aggregates in S and return the result

Group-by vs. Nested Query

```
Author(<a href="login">login</a>, name)
Wrote(<a href="login">login</a>, url)
```

• Find authors who wrote ≥ 10 documents:

```
SELECT DISTINCT Author.name
FROM Author
WHERE COUNT(
     SELECT Wrote.url
    FROM Wrote
    WHERE Author.login = Wrote.login) > 10
```

This is SQL by a novice

Group-by v.s. Nested Query

- Find all authors who wrote at least 10 documents:
- Attempt 2: SQL style (with GROUP BY)

SELECT Author name

FROM Author, Wrote

WHERE Author.login = Wrote.login

GROUP BY Author name

HAVING COUNT(Wrote.url) > 10

This is SQL by an expert

No need for DISTINCT: automatically from GROUP BY

Group-by vs. Nested Query

Which way is more efficient?

- Attempt #1- With nested: How many times do we do a SFW query over all of the Wrote relations?
- Attempt #2- With group-by: How about when written this way?

With GROUP BY can be much more efficient!

Acknowledgement

- Some of the slides in this presentation are taken from the slides provided by the authors.
- Many of these slides are taken from cs145 course offered by Stanford University.
- Thanks to YouTube, especially to <u>Dr. Daniel Soper</u> for his useful videos.