
CSC 261/461 – Database Systems
Lecture 6

Spring 2018

Announcements

• Due dates approaching:
–Project 1 Milestone 1
– Term Paper

• Next:
–Project 2 Part 1
• Will be out soon!
• Individual project
• More like an assignment
• Writing a few `real’ SQL queries.

Agenda

• Finish SQL (Chapter 5, 6, and 7)

• We will start Chapter 3 in next lecture

What did we learn?

• Queries on single tables:
– SELECT … FROM … WHERE …
– DISTINCT
– ORDER BY
– AND, OR, NOT

• What Else:
– NULL Values
– DEFAULT Values
– PRIMARY KEYs
– UNIQUE
– LIKE
– LIMIT

What did we learn?

• Queries on multiple tables:
–Set operations (UNION, INTERSECT, EXCEPT)
– Cross Product and JOIN

• What Else:
– Aliases (AS)
– IN
– ANY, ALL
– EXISTS
– Foreign Key

Finally

• Aggregation:
–MIN, MAX, COUNT, AVG, SUM
–GROUP BY
–HAVING

What Will We Learn Today?

• Different types of JOIN
–We only covered (INNER JOIN)

• Constraints

• Other SQL statements related to Data Manipulation
– INSERT INTO <TB>
– DELETE FROM <TB>
– UPDATE <TB> SET

• Other SQL statement related to Data Definition
– CREATE TABLE
– DELETE TABLE
– ALTER TABLE

RECAP: Inner Joins

By default, joins in SQL are “inner joins”:

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Both equivalent:
Both INNER JOINS!

Inner Joins + NULLS = Lost data?

By default, joins in SQL are “inner joins”:

However: Products that never sold (with no Purchase tuple) will be lost!

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Outer Joins

• An outer join returns tuples from the joined relations
that don’t have a corresponding tuple in the other
relations
– I.e. If we join relations A and B on a.X = b.X, and
– there is an entry in A with X=5, but none in B with X=5…

• A LEFT OUTER JOIN will return a tuple (a, NULL)!

• Left outer joins in SQL:
SELECT Product.name, Purchase.store
FROM Product
LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Now we’ll get products even if they didn’t sell

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase
INNER JOIN:

SELECT Product.name, Purchase.store
FROM Product

INNER JOIN Purchase
ON Product.name = Purchase.prodName

Note: another equivalent way to write an
INNER JOIN!

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase
LEFT OUTER JOIN:

SELECT Product.name, Purchase.store
FROM Product

LEFT OUTER JOIN Purchase
ON Product.name = Purchase.prodName

Other Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no match

TWO OTHER SQL CONSTRUCTS:
WITH & CASE

Use of WITH

• The WITH clause allows a user to define a table that will only be
used in a particular query (not available in all SQL
implementations)

• Used for convenience to create a temporary “View” and use that
immediately in a query

• Allows a more straightforward way of looking a step-by-step query

Latest MySQL (MySQL 8.0 supports WITH)

Example of WITH

• See an alternate approach to doing Q28:

• Q28’: WITH BIGDEPTS (Dno) AS
(SELECT Dno FROM EMPLOYEE
GROUP BY Dno
HAVING COUNT (*) > 5)

SELECT Dno, COUNT (*)
FROM EMPLOYEE
WHERE Salary>40000 AND Dno IN BIGDEPTS
GROUP BY Dno;

Retrieve the department
number having more than
5 employees and the
number of its employees
who are making more than
$40,000)

Use of CASE

• SQL also has a CASE construct

• Used when a value can be different based on certain conditions.

• Can be used in any part of an SQL query where a value is expected

• Applicable when querying, inserting or updating tuples

EXAMPLE of CASE

• The following example shows that employees are receiving
different raises in different departments

SELECT CustomerName, City, Country
FROM Customers
ORDER BY
(CASE

WHEN City IS NULL THEN Country
ELSE City

END);

Another Example of CASE

SELECT OrderID, Quantity,
CASE

WHEN Quantity > 30 THEN "The quantity is greater than 30"
WHEN Quantity = 30 THEN "The quantity is 30"
ELSE "The quantity is something else"

END
AS NOTE
FROM OrderDetails;

CONSTRINTS

Types of Constraints

• Implicit Constraints:
– Inherent model-based constraints
– Ex: Relations cannot contain duplicates

• Explicit Constraints:
– Schema based constraints
–We will mostly focus on these constraints.
– Ex: Domain, Primary Key, Foreign Key, Not NULL,

• Semantic Integrity constraints:
– Usually enforced within the application program.
– SQL uses Triggers and Assertions as a way to handle this.

Domain Constraints

• States, within each tuple, each attribute A must be an atomic value
from the domain of A.
– Ex: You can not pass a string as EmployeeID

Entity Integrity and Referential Integrity

• Entity integrity constraint states that no primary key value can be
NULL.

• Referential integrity constraint states that every value of a foreign
key must match a values of an existing primary key

CSC 261, Spring 2017, UR

Self study: Key, superkey, candidate key and primary key

Assertions and Triggers

• Specifying
– Constraints as Assertions
– Actions as Triggers

• CREATE ASSERTION
– Specify additional types of constraints outside scope of built-in relational

model constraints
• CREATE TRIGGER
– Specify automatic actions that database system will perform when certain

events and conditions occur

CSC 261, Spring 2017, UR

General Constraints as Assertions in SQL

• CREATE ASSERTION
– Specify a query that selects any tuples that violate the desired condition
– Use only in cases where it goes beyond a simple CHECK which applies to

individual attributes and domains

Introduction to Triggers in SQL

• CREATE TRIGGER statement
– Used to monitor the database

• Typical trigger has three components which make it a rule for an
“active database’’:
– Event(s)
– Condition
– Action

USE OF TRIGGERS

delimiter //
CREATE TRIGGER upd_check AFTER INSERT ON account

FOR EACH ROW
BEGIN

IF NEW.amount < 0 THEN
SET NEW.amount = 0;
ELSEIF NEW.amount > 100 THEN
SET NEW.amount = 100;
END IF;

END;//
delimiter ;

GOING BEYOND SELECT
We are going backwards!

Recall: CRUD

•

CRUD refers to all of the major functions that are implemented by each DBMS
Each letter corresponds to a standard SQL statement

INSERT INTO

Only if adding values for all columns

https://www.w3schools.com/sql/sql_insert.asp

Syntax

UPDATE <TB> SET

Syntax

Be careful when updating records. If you omit the WHERE clause,
ALL records will be updated!

https://www.w3schools.com/sql/sql_update.asp

DELET FROM

Syntax

https://www.w3schools.com/sql/sql_delete.asp

Recall: CRUD

•

CRUD refers to all of the major functions that are implemented by each DBMS
Each letter corresponds to a standard SQL statement

Are we done?

• No.

• Can we apply CRUD to the database itself?
–Yes!

CRUD on Databases

Database
CREATE TABLE

SHOW TABLES

ALTER TABLE

DROP TABLE

CREATE TABLE
Syntax

Example

SHOW TABLES

Syntax

Real Syntax

https://dev.mysql.com/doc/refman/5.7/en/show-tables.html

Adding FULL shows VIEWs
too. Coming up soon!

ALTER TABLE

Add Column

Delete Column

Modify Column Note: This
conversion may result in
alteration of data.

For full list: https://dev.mysql.com/doc/refman/5.5/en/alter-table.html

DROP TABLE
Syntax

Example

VIEWS

Views (Virtual Tables) in SQL

• Concept of a view in SQL

– Single table derived from other tables called the defining tables

– Considered to be a virtual table that is not necessarily populated

CREATE VIEW
Syntax

Example

View Implementation

• Complex problem of efficiently implementing a view for querying

• View is always up-to-date
– Responsibility of the DBMS and not the user

View Materialization

• Strategy1: Query modification approach
– Compute the view as and when needed. Do not store permanently
–Modify view query into a query on underlying base tables
– Disadvantage:

• inefficient for views defined via complex queries that are time-consuming to
execute

• Strategy 2: View materialization
– Physically create a temporary view table when the view is first queried
– Keep that table on the assumption that other queries on the view will

follow
– Requires efficient strategy for automatically updating the view table

when the base tables are updated

View Materialization (contd.)

• Multiple ways to handle materialization:
– immediate update strategy updates a view as soon as the base tables are

changed

– lazy update strategy updates the view when needed by a view query

– periodic update strategy updates the view periodically (in the latter
strategy, a view query may get a result that is not up-to-date).

• This is commonly used in Banks, Retail store operations, etc.

Slide 7- 46

FOREIGN KEY CONSTRAINT

Foreign Key

Note the CONSTRAINT keyword. You can name any
constraint.

Creating a Foreign Key after Table Creation

Using FOREIGN KEY Constraints

• CASCADE:
– Delete or update the row from the parent table, and automatically delete or

update the matching rows in the child table.
– Both ON DELETE CASCADE and ON UPDATE CASCADE are supported

• SET NULL:
– Delete or update the row from the parent table, and set the foreign key column

or columns in the child table to NULL.
– Both ON DELETE SET NULL and ON UPDATE SET NULL clauses are supported.

• RESTRICT / NO ACTION:
– Rejects the delete or update operation for the parent table.
– Specifying RESTRICT (or NO ACTION) is the same as omitting the ON

DELETE or ON UPDATE clause.

• SET DEFAULT:
– This action is recognized by the MySQL parser but no action is taken.

SUMMARY

CRUD: Differences between Database and Tables

CSC 261, Spring 2017, UR

CRUD Table Database

Create INSERT INTO <TB> CREATE TABLE

Read SELECT SHOW TABLES

Update UPDATE <TB> SET ALTER TABLE

Delete DELECT FROM <TB> DROP TABLE

Acknowledgement

• Some of the slides in this presentation are taken from the slides
provided by the authors.

• Many of these slides are taken from cs145 course offered by
Stanford University.

• https://www.w3schools.com/

• MySQL 5.5 Reference Manual
– https://dev.mysql.com/doc/refman/5.5/en/

