CSC 261/461 – Database Systems Lecture 8

Spring 2018

CSC 261, Spring 2018

Announcement

• Quiz

- No New Problem Set
- Study Chapter 5, 6, and 7
- Go through the problem set

Announcement

- Project 2 Part 1
 - Already out.
 - Workshop covered the basics
 - Objective: Applying SQL queries on 'real' data
 - Secondary Objective: Get proficient with Database Design and ER diagram
- Project 1 Milestone 2
 - Structure is closely related to Project 2 Part 1 (though, No SQL coding involved)
 - You should start from scratch (though, keep in mind what you have done in Milestone 1)

Start from Scratch!

What does it mean?

- This time, start with the ER diagram
- Feel free to add more entity sets or relations, add more attributes or remove attributes as required.
- Generate the resultant tables/relations from the ER diagram
 - (NOTE: This tables/relations may be significantly different from what you had come up with in Project 1 Milestone 1. And that is absolutely fine!!!
 - And, that is, in fact, the purpose.

Database Design Process

Q & A

- How are Project 2 part 1 and Project 1 Milestone 1 related?
- Project 2 Part 1 and Project 1 Milestone 2 both deals with ER diagram
- After this week, we will not talk about ER diagram a lot.
- You need to study ER diagram for the next week's quiz too.
- Both this projects give you a chance to apply ER diagrams in real world scenarios.

Q & A

- Piazza:
 - Not many questions are asked!
 - Please avoid marking questions as private

Q & A

Reminder: To share any concern you have Please use Feedback form on course website: <u>http://www.cs.rochester.edu/courses/261/spring2018/</u> -> Forms -> Feedback Form

> I personally will look into each of your concerns and try my best to resolve any issue

Quiz Collection

From where can I collect my quizzes?

Mailbox next to my office

Quiz Collection

Are they sorted

Yes. Sorted by ClassID

The ER (Entity-Relationship) Model

Agenda

- 1. High-level motivation for the E/R model
- 2. Entities
- 3. Relations
- 4. E/R Model

Mapping natural language

 Chen proposed the following "rules of thumb" for mapping natural language descriptions into ER diagrams: <u>"English, Chinese and ER</u> <u>diagrams"</u> by Peter Chen.

English grammar structure	ER structure
Common noun	Entity type
Proper noun	Entity
Transitive verb	Relationship type
Intransitive verb	Attribute type
Adjective	Attribute for entity
Adverb	Attribute for relationship

Source:

https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_mo del

Relationships and Attributes

• Relationships may have attributes as well.

TYPES OF RELATIONSHIP

CSC 261, Spring 2018

Conceptual Crow's Foot Relationship Symbols

Many-Many Relationships

- Focus: binary relationships, such as Sells between Seller and Buyer.
- In a *many-many* relationship, an entity of either set can be connected to many entities of the other set.
 - E.g., a seller sells many items; a buyer can buy many items too.

In Pictures:

many-many

Many-One Relationships

- Some binary relationships are *many* -*one* from one entity set to another.
- Each entity of the first set is connected to at most one entity of the second set.
- But an entity of the second set can be connected to zero, one, or many entities of the first set.
- E.g.: One buyer can have multiple order number, but one order can be bought by only one buyer.

In Pictures:

many-one

One-One Relationships

- In a *one-one* relationship, each entity of either entity set is related to at most one entity of the other set.
- Example: Relationship president between entity country and person.
 - A person can be the president of only one country.
 One country can have only one president.

In Pictures

Maximum Cardinality

- Relationships are named and classified by their cardinalities, which is a word that means *count* (as in the number of items in a set)
- Each of the three types of binary relationship shown previously has a different *maximum cardinality*
- Maximum cardinality is the maximum number of entity instances that can participate in a relationship instance
 - One, many, or some other positive fixed number

Minimum Cardinality

- Minimum cardinality is the minimum number of entity instances that must participate in a relationship instance
- These values typically assume a value of zero (optional) or one (mandatory)

Crow's Foot Symbols with Cardinalities

Cardinality Example

- Maximum cardinality is many for Order and one for Customer
- Minimum cardinality is one for both Customer and Order
 - Each customer can place one or more orders
 - Each order is associated with one and only one customer

Entity-Relationship Diagrams

- The diagrams in previous slides are called entity-relationship diagrams
 - Entities represented by rectangles
 - Relationships represented by lines
 - Cardinalities represented by Crow's Foot symbols

HAS-A Relationships

- The relationships in the previous slides are called HAS-A relationships
- The term is used because each entity instance *has a* relationship to a second entity instance
 - An employee has a locker
 - A locker has an employee
- There are also IS-A relationships

Different Representations

(min,max) constraint

Agenda

- More about ER model
- ER model to Relation (Table)

Special Symbols Used

Multivalued Attribute

Derived Attribute

Strong and Weak Entities

- A weak entity is an entity whose instances cannot exist in the database without the existence of an instance of another entity
- Any entity that is not weak entity is called a strong entity

 Instances of a strong entity can exist in the database independently
- The weak entity's identifier is a combination of the identifier of the owner entity and the partial key of the weak entity.

In E/R Diagrams

- Double diamond for *supporting* many-one relationship with Weak Entity.
- Double rectangle for the weak entity set.

Example: Weak Entity Set

- name is almost a key for football players, but there might be two with the same name.
- number is certainly not a key, since players on two teams could have the same number.
- But number, together with the team name related to the player should be unique.

Partial vs Total Participation

- An entity set may participate in a relation either totally or partially.
- **Total participation** means that every entity in the set is involved in the relationship
 - depicted as a **double line**.
- **Partial participation** means that not all entities in the set are involved in the relationship, e.g., not every professor guides a student
 - depicted by a single line.

Weak Entity, Total Participation and Partial Key

(min, max) constraint

- Min = 0 implies partial participation
- Min > 0 implies total participation

Different Representations

(min,max) constraint

HAS-A Relationships

- The relationships in the previous slides are called HAS-A relationships
- The term is used because each entity instance *has a* relationship to a second entity instance
 - An employee has a locker
 - A locker has an employee
- There are also IS-A relationships

Modeling Subclasses

- Some objects in a class may be special, i.e. worthy of their own class
 - Define a new class?
 - But what if we want to maintain connection to current class?
 - Better: define a subclass

• *Ex:*

Modeling Subclasses

Understanding Subclasses

Figure 3.14 Summary of the notation for ER diagrams.

• Summary

CSC 261, Spring 2018

Design Theory (ER model to Relations)

ER Models to Relations

Please go through Chapter 9

Entity Sets to Tables

Relationship Sets (without Constraints) to Tables

Relationship Sets (without Constraints) to Tables

```
CREATE TABLE Works_in( ssn char(11),
did integer (30),
address varchar(30),
since date,
PRIMARY KEY (ssn, did, address),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (address) REFERENCES Locations,
FOREIGN KEY (did) REFERENCES Departments,
)
```

Relationship Sets (without Constraints) to Tables

CREATE TABLE Reports_To(
 supervisor_ssn char(11),
 subordinate_ssn char(11),
 PRIMARY KEY (supervisor_ssn,
 subordinate_ssn),
FOREIGN KEY (supervisor_ssn)
 REFERENCES Employees(ssn),
FOREIGN KEY (subordinate_ssn)
 REFERENCES Employees(ssn)
)

Relationship Sets (with key Constraints) to Tables

Better way of doing it

Relationship Sets (with Participation Constraints) to Tables

CREATE TABLE Dept_Mgr(did integer (30), dname varchar(30), budget float(30), ssn char(11), since date, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees ON DELETE NO ACTION

Translating Weak Entity Sets

Translating Class Hierarchies

Two options

- 1. We can map each of the entity sets Employees, Hourly_Emps, and Contract_Emps to a distinct relation.
- 2. We can create just two relations, corresponding to Hourly_Emps and Contract_Emps

Both have their pros and cons

- Redundancy
- Performance

E/R Summary

- E/R diagrams are a visual syntax that allows technical and non-technical people to talk
 - For conceptual design
- Basic constructs: **entity**, **relationship**, and **attributes**
- A good design is faithful to the constraints of the application, but not overzealous

Scenario

• One customer can have at max 2 loans. One loan can be given to multiple customers.

What it really means:

- One customer can have (0,2) loans
- One loan can be given to (I,n) customer
- This is a many to many scenario

Different Representations

Acknowledgement

- Some of the slides in this presentation are taken from the slides provided by the authors.
- Many of these slides are taken from cs145 course offered by Stanford University.

CSC 261, Spring 2018

CSC 261, Spring 2018

DRAW AN E/R DIAGRAM FOR FOOTBALL

Use the following simplified model of a football season (concepts to include are underlined):

ERAND 122

<u>Teams</u> play each other in <u>Games</u>. Each pair of teams can play each other multiple times

<u>Players</u> belong to Teams

8	1	\$
ŧ		\$
ģ	VXV XX	÷
	0000	ş
ş		

A Game is made up of <u>Plays</u> that result in a yardage gain/loss, and potentially a touchdown

A Play will contain either a <u>Pass</u> from one player to another, or a <u>Run</u> by one player

Note that various ER diagrams could work, not just the following one!

CSC 261, Spring 2018

Note two copies of the Teams entity here!

<u>Teams</u> play each other in <u>Games</u>. Each pair of teams can play each other multiple times

<u>**Players**</u> belong to Teams (assume no trades / changes)

A Game is made up of <u>Plays</u> that result in a yardage gain/loss, and potentially a touchdown

A Play will contain either a <u>Pass</u> from one player to another, or a <u>Run</u> by one player

Note that various ER diagrams could work, not just the following one!

CSC 261, Spring 2018

ENHANCE YOUR E/R DIAGRAM!

Also make sure to add (new concepts underlined):

A player can only belong to one team, a play can only be in one game, a pass/run..?

Players can achieve a <u>Personal Record</u> linked to a specific Game and Play

Players have a <u>weight</u> which changes in on vs. off-season

a <u>Personal Record</u> linked to a specific Game and Play

Note that various ER diagrams could work, not just the following one!

ACTIVITY 3

ADD IN: SUBCLASSES, CONSTRAINTS, AND WEAK ENTITY SETS

Concepts to include / model:

Teams belong to cities- model as *weak entity sets*

Players are either on Offense or Defense, and are of types (QB, RB, WR, TE, K)

All passes are to exactly one player; all runs include a player

Make sure you have designated keys for all our concepts!

Players are either on Offense or Defense, and are of types (QB, RB, WR, TE, etc.)