1. High-level motivation for the E/R model

2. Entities

3. Relations

4. E/R Model
Special Symbols Used

- Multivalued Attribute
- Derived Attribute
Strong and Weak Entities

- A **weak entity** is an entity whose instances **cannot** exist in the database without the existence of an instance of another entity.

- Any entity that is not weak entity is called a **strong entity**
 - Instances of a strong entity can exist in the database independently.

- The **weak entity’s identifier** is a combination of the **identifier** of the owner entity and the **partial key** of the weak entity.
In E/R Diagrams

- Double diamond for **supporting** many-one relationship with Weak Entity.
- Double rectangle for the weak entity set.

CSC 261, Spring 2018
Example: Weak Entity Set

- **name** is almost a key for football players, but there might be two with the same name.
- **number** is certainly not a key, since players on two teams could have the same number.
- But **number**, together with the team **name** related to the player should be unique.
Partial vs Total Participation

• An entity set may participate in a relation either totally or partially.
 • **Total participation** means that every entity in the set is involved in the relationship
 – depicted as a **double line**.

• **Partial participation** means that not all entities in the set are involved in the relationship, e.g., not every professor guides a student
 – depicted by a **single line**.
Weak Entity, Total Participation and Partial Key

Diagram:
- **TITLE**
- **BOOK**
 - 1: **CONTAINS**
 -
- **CHAPTER**
 - N: **CONTAINS**
 -
- **BOOK ID**
- **CHAPTER ID**

CSC 261, Spring 2018
(min, max) constraint

- Min = 0 implies partial participation
- Min > 0 implies total participation
• One customer can have at max 2 loans. One loan can be given to multiple customers.

What it really means:
– One customer can have \((0,2)\) loans
– One loan can be given to \((1,n)\) customer
– This is a many to many scenario
Different Representations

Crow’s foot Notation

Chen Notation

(min, max) constraint
HAS-A Relationships

• The relationships in the previous slides are called HAS-A relationships
• The term is used because each entity instance has a relationship to a second entity instance
 – An employee has a locker
 – A locker has an employee
• There are also IS-A relationships
Modeling Subclasses

- Some objects in a class may be special, i.e. worthy of their own class
 - Define a new class?
 - But what if we want to maintain connection to current class?
 - Better: define a subclass
 - Ex:

We can define subclasses in E/R!
Modeling Subclasses

Child subclasses contain all the attributes of all of their parent classes plus the new attributes shown attached to them in the E/R diagram.
Understanding Subclasses

• Think in terms of records; ex:

 – Product
 - name
 - price

 – SoftwareProduct
 - name
 - price
 - platforms

 – EducationalProduct
 - name
 - price
 - ageGroup

Child subclasses contain all the attributes of all of their parent classes plus the new attributes shown attached to them in the E/R diagram.
Think like tables...

Product

<table>
<thead>
<tr>
<th>name</th>
<th>price</th>
<th>category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
</tr>
</tbody>
</table>

Sw.Product

<table>
<thead>
<tr>
<th>name</th>
<th>platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>unix</td>
</tr>
</tbody>
</table>

Ed.Product

<table>
<thead>
<tr>
<th>name</th>
<th>ageGroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>toddler</td>
</tr>
<tr>
<td>Toy</td>
<td>retired</td>
</tr>
</tbody>
</table>
• Summary

Identifying Relationship

- Entity
- Weak Entity
- Relationship
- Attribute
- Key Attribute
- Multivalued Attribute
- Composite Attribute
- Derived Attribute
- Total Participation of E_2 in R
- Cardinality Ratio $1:N$ for $E_1:E_2$ in R
- Structural Constraint (min, max) on Participation of E in R
Design Theory (ER model to Relations)
Please go through Chapter 9
CREATE TABLE Employees (ssn char(11), name varchar(30), lot Integer, PRIMARY KEY (ssn))

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
<th>lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3333</td>
<td>Alex</td>
<td>23</td>
</tr>
<tr>
<td>234-44-6666</td>
<td>Bob</td>
<td>44</td>
</tr>
<tr>
<td>567-88-9787</td>
<td>John</td>
<td>12</td>
</tr>
</tbody>
</table>
Relationship Sets (without Constraints) to Tables

- Employees
 - name
 - ssn
 - lot

- Works_In
 - since
 - did

- Departments
 - dname
 - budget

- Locations
 - address
 - capacity

CSC 261, Spring 2018
CREATE TABLE Works_in(
 ssn char(11),
 did integer (30),
 address varchar(30),
 since date,
 PRIMARY KEY (ssn, did, address),
 FOREIGN KEY (ssn) REFERENCES Employees,
 FOREIGN KEY (address) REFERENCES Locations,
 FOREIGN KEY (did) REFERENCES Departments,
)
CREATE TABLE `Reports_To`
 (supervisor_ssn char(11),
 subordinate_ssn char(11),
 PRIMARY KEY (supervisor_ssn, subordinate_ssn),
 FOREIGN KEY (supervisor_ssn)
 REFERENCES Employees(ssn),
 FOREIGN KEY (subordinate_ssn)
 REFERENCES Employees(ssn)
)
CREATE TABLE Manages (ssn char(11),
did integer (30),
since date,

PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments,
)
CREATE TABLE Dept_Mgr (did integer (30),
dname varchar(30),
budget float(30),
ssn char(11),
since date,

PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
CREATE TABLE Dept_Mgr(
 did integer (30),
 dname varchar(30),
 budget float(30),
 ssn char(11),
 since date,

 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees ON DELETE NO ACTION
)
CREATE TABLE Dept_Policy (
 pname varchar(30),
 age integer,
 cost float,
 ssn char(11),
 PRIMARY KEY (pname, ssn),
 FOREIGN KEY (ssn) REFERENCES Employees
 ON DELETE CASCADE
)
Translating Class Hierarchies

Employees

ssn
lot
name

isa

Hourly_Emps

Contract_Emps

Hourly_wages

Hours_worked

Contract_id
Two options

1. We can map each of the entity sets Employees, Hourly_Emps, and Contract_Emps to a distinct relation.
2. We can create just two relations, corresponding to Hourly_Emps and Contract_Emps

 Both have their pros and cons

 – Redundancy
 – Performance
We did not cover Chapter 4 and you do not need to study it.

If you understand this `isA` concept and how to convert such an ER diagram into tables, that’s fine. And this is exactly what steps 8 and 9 are in Chapter 9.
E/R diagrams are a visual syntax that allows technical and non-technical people to talk
 • For conceptual design

Basic constructs: entity, relationship, and attributes

A good design is faithful to the constraints of the application, but not overzealous
Acknowledgement

• Some of the slides in this presentation are taken from the slides provided by the authors.

• Many of these slides are taken from cs145 course offered by Stanford University.
ACTIVITIES
DRAW AN E/R DIAGRAM FOR FOOTBALL

Use the following simplified model of a football season:

(Concepts to include are underlined):

Teams play each other in Games. Each pair of teams can play each other multiple times.

Players belong to Teams.

A Game is made up of Plays that result in a yardage gain/loss, and potentially a touchdown.

A Play will contain either a Pass from one player to another, or a Run by one player.
Note that various ER diagrams could work, not just the following one!
Note two copies of the Teams entity here!

Teams play each other in **Games**. Each pair of teams can play each other multiple times.
Players belong to Teams (assume no trades / changes)
A Game is made up of **Plays** that result in a yardage gain/loss, and potentially a touchdown.
A Play will contain either a **Pass** from one player to another, or a **Run** by one player.
Note that various ER diagrams could work, not just the following one!

ACTIVITY 2
ENHANCE YOUR E/R DIAGRAM!

A player can only belong to one team, a play can only be in one game, a pass/run..?

Players can achieve a **Personal Record** linked to a specific Game and Play

Players have a **weight** which changes in on vs. off-season

Also make sure to add **(new concepts underlined)**:
A player can only belong to one team, a play can only be in one game, a pass/run...?
Players can achieve a **Personal Record** linked to a specific Game and Play.
Players might have different weights at different times. Note: point here is that different players might have different numbers of training / weight phases - hence should represent as new entity!
Note that various ER diagrams could work, not just the following one!

ACTIVITY 3
ADD IN: SUBCLASSES, CONSTRAINTS, AND WEAK ENTITY SETS

Teams belong to cities - model as weak entity sets

Players are either on Offense or Defense, and are of types (QB, RB, WR, TE, K)

All passes are to exactly one player; all runs include a player

Make sure you have designated keys for all our concepts!
Teams

LocatedIn

Teams

CSC 261, Spring 2018

CITIES

NAME

Teams belong to cities- model as *weak entity sets*
Players are either on Offense or Defense, and are of types (QB, RB, WR, TE, etc.)