
Project #3 (MongoDB)
CSC 261/461 (Database Systems), Spring 2018,

University of Rochester
Due Date: 04/19/2018 (11:59 pm)

You may collaborate with another student but you must hand in your own work. Full discussion of
the problem and solutions is allowed. This includes talking about the concepts relevant to the problem, as
well as the details of the solution.

Introduction

Last time, we had provided you a fairly large volume of data downloaded (over a decade ago!) from the eBay
website stored as XML files. For this project, we are giving you the same data but in JSON format. Like XML,
JSON format is primarily used to store semi-structured data.

Your task is to examine the .json files, load these files as a json array in a MondoDB collection
(database name: ebay; collection name: items) and later perform a few operations and run a few
queries on the data. In this project, we will see how elegantly MondoDB handles ‘schemaless’ data. Some of the
queries you will run for this project are taken from Project 2 Part 1. This is to demonstrate that we can achieve
the same results through MongoDB even without storing four different relations as we did for Project 2.

The difficulties of the queries vary but the learning curve would be steep. So, start early. Also, (very
importnat for this project) please take help of the TAs to setup MongoDb so that you can concentrate on the
queries rather than the logistics. During the workshops, TAs will help you with any question you have.

Task A: Working on Bluehive and running MongoDB

CS servers do not host MongoDB services. We will solely use Bluehive server (hosted by CIRC) for this project.
You are welcome to do download MondoDB on your own machine, but all the testing would be performed on
Bluehive. So, it is your responsibility to make sure your queries work on Bluehive.

Wewill maintain a separate tutorial (http://www.cs.rochester.edu/courses/261/spring2018/projects/
proj3/mongodb-tutorial.html) to help you working on Bluehive.

Task B: Examine and load the JSON data files

The JSONfiles are located in http://www.cs.rochester.edu/courses/261/spring2018/projects/proj3/
json.tar. You can use the following command to download the file:

wget http://www.cs.rochester.edu/courses/261/spring2018/projects/proj3/json.tar

Untar the tar file. It will create a directory by name ‘json’. Go into directory (command: cd json). The
folder contains 40 json files:
items-0.json, items-1.json, ..., items-39.json and a file load.sh

There is a total of about 20,000 auctions. Note that the _id attribute for any item is unique and involved in
only one auction.

Here is a sample of the data:

{
"_id": "1043817906",
"Name": "NEVADA ghost town bottle digging book, 1961",
"Category": [

Project # 3 (MongoDB) Page 1 / 4

http://www.cs.rochester.edu/courses/261/spring2018/projects/proj3/mongodb-tutorial.html
http://www.cs.rochester.edu/courses/261/spring2018/projects/proj3/mongodb-tutorial.html
http://www.cs.rochester.edu/courses/261/spring2018/projects/proj3/json.tar
http://www.cs.rochester.edu/courses/261/spring2018/projects/proj3/json.tar

"Collectibles",
"Housewares & Kitchenware",
"Bottles: Antique (Pre-1900)",
"Medicines, Cures"

],
"Currently": 6.00,
"First_Bid": 6.00,
"Number_of_Bids": 1,
"Bids": {

"Bid": {
"Bidder": {
"_id": "mimiyaya",
"_Rating": 10,
"Location": "Atlanta, Ga",
"Country": "USA"

},
"Time": "Dec-07-01 04:56:27",
"Amount": 6.00
}

},
"Location": "Iowa",
"Country": "USA",
"Started": "Dec-04-01 16:56:27",
"Ends": "Dec-14-01 16:56:27",
"Seller": {

"_id": "tjsdsm",
"_Rating": 439

},
"Description": "GREAT BOOK from the early heyday of bottle digging. "

},

Task C: Load your data into MongoDB

You need to load all the JSON files into MongoDB. Each entry in these files will be stored as a document.
For this, run the following commands:

(All the lines starting with # are comments)
Replace XX in 270XX with your 2-digit class ID throughout the document

Check the current directory. You should be in json directory
pwd

Make a directory mongo.
We will provide this directory to MongoDB to store all its information.
mkdir mongo

Give execution permission to load.sh
chmod u+x load.sh

MongoDB server should run on the compute node server. Starting an interactive
session

interactive -p standard -t 2:00:00

loading MongoDB module

Project # 3 (MongoDB) Page 2 / 4

module load mongodb

Start Mongo daemon (mongo is the folder name where you want to store the file)
Replace XX with your 2 digit classID
Each student must use different port throughout this project
mongod --dbpath mongo --port 270XX > mongod.log &

Run load.sh with the port number you used
./load.sh 270XX

You should see messages like:
imported 500 documents ... (multiple times, once for each json file)
STOP: if you get any error. Something is wrong. Check again.

• You will create mongo folder and run load.sh file only once

• If you ever need to start from scratch. Delete the database ebay , and run load.sh file again.

• You should always work on a compute node. So, from now onwards, every time you log in, you should
go to the JSON directory, and run this three commands (same as you have done before.)

interactive -p standard -t 2:00:00
module load mongodb
mongod --dbpath mongo --port 270XX > mongod.log &

• To start mongo client, use the command:

Providing the port number and database name
mongo --port 270XX ebay

• Now you can run any command just like SQL but using different a syntax. For example, the following
command returns one document from collection ‘item’.

db.items.findOne()

• Alternatively, you can store the commands as javascript file and run them without typing the com-
mands again and agin. For example, if the same command is stored in 0.js file, you can run the
query by typing the following command.

Providing the port number and database name.
Assume commands are stored in 0.js (We will talk about this soon)
mongo --port 270XX ebay < 0.js

Task D: Test your MongoDB database

The final step is to take your newly loaded database for a test drive by running a few queries over it. As with
database creation, first test your queries interactively using the MongoDB command-line client, then store these
queries in a file to execute them directly. First, try some simple queries then more complex queries involving
aggregation. Make sure the results look correct. When you are confident that everything is correct, write queries
for the following specific tasks:

1. Find the number of seller in the database.

Project # 3 (MongoDB) Page 3 / 4

2. Find the number of bidders in the database.

3. Find the number of items from Canada (Country)

4. Return the id and rating of all the sellers whose rating is higher than 1000 (sorted by rating, id (both
ascending)).

5. Find the number of auctions belonging to exactly four categories

6. Compute the average of all First_Bid fields

7. Find the ID(s) of auction(s) with the highest current price. (tough)

8. Insert a new item/auction with _id "88888888" and zero (0) bids. This auction/item must have a name
and two categories. (Name and Categories values can be arbitrary)

9. (UPDATE) Add a new bid of $1000 to 1678348584. Add 1 to the number of Bids. Other fields in the bid
are optional.

10. Delete all the auction documents where seller rating is less than zero (0).

We will post answers to the queries on Piazza. We highly encourage you to discuss the answers on Piazza.
Put each of the 10 commands in its own command file: 1.js, 2.js, ..., 10.js . Make sure that the

naming of your files corresponds to the ordering above, as we will check the correctness using an automated
script. We will deduct points for not adhering to the naming conventions.

The content of a sample .js file (0.js) which displays the first document from the collection items may
look like:

db.items.findOne()

You can run the file as:

mongo --port 270XX ebay < 0.js

Submission instructions

To submit the project, first gather all ten (10) .js files in the folder proj3 .
Now, create an archive file (with .tar extension) for submission.

cd ..
tar -cvf proj3.tar proj3
ls

(Note: cd .. takes you to the parent directory and ls command should display all the files int the directory
including the tar file.)

You can submit your work on bluehive itself. submit the tar file using the command:

/public/hwen5/submit p3 proj3.tar

You should get a feedback whether the submission is successful or not.
You may resubmit as many times as you like; however, only the latest submission (along with the timestamp)

will be saved, and we will use your latest submission for grading your work. Submissions via email will not be
accepted! No late submissions allowed.

Project # 3 (MongoDB) Page 4 / 4

