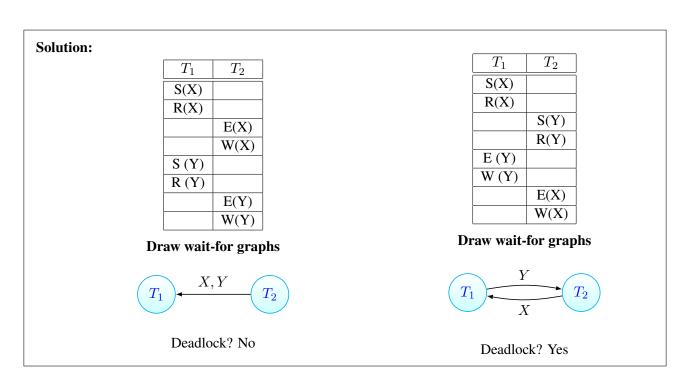
PRACTICE PROBLEM SET #10

CSC 261/461 (Database Systems), Spring 2018, University of Rochester

Problem 1

Apply Shared lock S(A) or exclusive lock E(A) on any object A as per Strict 2PL technique. Draw wait-for graphs for each schedule. Indicate if the schedule will cause deadlock.

T_1	T_2	
R(X)		
	W(X)	
R (Y)		
	W(Y)	

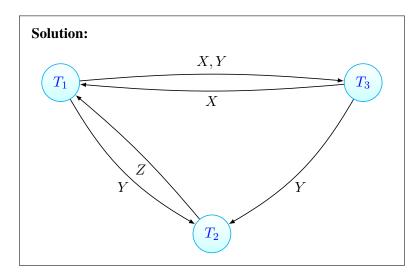

Draw wait-for graphs

T_1	T_2	
R(X)		
	R(Y)	
W (Y)		
	W(X)	

Draw wait-for graphs

Deadlock? (y/n)

Deadlock? (y/n)



Problem 2

Two schedules (Read (R) and Write (W) operations of three transactions T_1 , T_2 , and T_3) are given. Assume operations are listed in a chronological order.

For both schedules, draw the confilict / precedence / serializibility graph. Find an equivalent serial schedule (if any). Justify if no serial schedule is available.

Precedence graph

An equivalent serial schedule (if any)

 T_1 $\overline{T_2}$ $\overline{T_3}$ R(X) R(Y) W(Y) R(Y) R(X) R(Z)W(Z)W(Y) W(X) R(Z) R(Y) W(Y) W(X)

Solution: No equivalent serial schedule

Justify if no equivalent serial schedule is possible.

Solution: Because of cycle

Precedence graph

Solution:
Y,Z
T_1 T_3
Y X,Y
T_2

An equivalent serial schedule (if any)

Solution: $T_1 -> T_2 -> T_3$

Justify if no equivalent serial schedule is possible.

Solution: Not applicable

T_1	T_2	T_3
R(Y)		
R(Z)		
	R(X)	
	W(X)	
W(Y)		
W(Z)		
		R(Z)
	R(Y)	
	W(Y)	
		R(Y)
		W(Y)
		R(X)
		W(X)