PRACTICE PROBLEM SET #4

CSC 261/461 (Database Systems), Spring 2018, University of Rochester 02/22/2017

Problem 1

Convert the following ER diagram into a relational database schema

Figure 1: ER diagram for Company Database

Solution:

Follow the steps of the algorithm for ER-to-relational mapping (Chapter 9)

PS # 4 Page 1 / 3

EMPLOYEE

Figure 2: Database schema for Company

Problem 2

Consider figure 3. Show scenarios where insertion, deletion, and modification anomalies may be present in the relation.

Figure 3: Emp_dept relation

Solution:

• Insertion anomalies

Two scenarios:

- a) We must include correct attribute values for the department for each employee while inserting.
- b) It is difficult to insert a new department that has no employee as yet.
- Deletion anomalies:

If we delete all the employees who were working for a particular department, the information concerning the department is lost.

PS # 4 Page 2 / 3

• Modification anomalies:

If we update one of the attributes of a particular department, say Dname for a particular employee without doing so for all the employees who work in the same department, the database will be inconsistent.

Note: Read section 14.1.2 for further details.

Problem 3

Prove Armstrong's axioms (reflexive rule, augmentation rule, and transitive rule).

Solution:

Please refer Section 15.1.1 of the textbook (page 507)

Problem 4

Consider a schema with attributes X=A,B,C,D,E,F,G,H. Determine $\{A,B,F\}^+$, the closure of $\{A,B,F\}$. The following FDs are provided:

$$A, C \to D$$

$$D, H, G \to E$$

$$A, B \to G$$

$$F, B, G \to C$$

Solution:

 $\{A,B,C,D,F,G\}$

PS # 4 Page 3 / 3