
Tue April 17 Space Complexity
 
Space complexity classes; Savitch's theorem; Quantified Boolean Formulas
 
What is the space complexity of a deterministic Turing Machine M?
A function f(N) → N, where f(n) is the max number of tape cells M scans on any input of length 
n.
 
For a non-deterministic TM, what does f(n) measure?
max number of cells on any branch
 
SPACE(f(n)) = ?
SPACE(f(n)) = { L | L is a language decided by an O(f(n)) space deterministic TM }
NSPACE(f(n)) = ?
 
Claim: SAT is in SPACE(n)
Why?
- loop over all possible truth assignments
- requires O(n) space (one cell per variable, and original formula)
 
ALL_NFA = { <A> | A is a NFA and L(A) = Sigma* }
 
Note: NOT known to be in NP or co-NP.
 
Claim: complement ALL_NFA is in NSPACE(n)
Idea: guess string that is rejected
1. Place marker on start state
2. repeat 2^q times
3       Non-deter select an input symbol and change the positions of the markers
          to simulate reading that symbol
4. Accept iff you reach a point where none of the markers lie on an accept state
 
Why only need to repeat 2^q times?  Because in any longer string that would be rejected, the 
locations of the markers would repeat.
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what is SAVITCH’s THEOREM?
 
NSPACE(f(n)) subseteq SPACE(f^2(n))
 
IE: you can simulate a ND TM by a TM using very little space.
 
Naive approach: try each branch sequentially.
Problem: branch that uses f(n) space may run for 2^O(f(n)) steps.
    Why?  → because that is all possible configurations of the space
 Each step may be a ND choice
 Therefore there could be 2^f(n) ND choices to record,
so keeping track of the choices could require O(2^f(n)) space.
 
Alternative approach: divide and conquer recursive algorithm.
configuration = what is on tape, location of head, finite control state
 
Yieldability problem: can a NTM get from c1 to c2 in t steps?
 
CANYIELD(c1, c2, t):
  if t = 1 then 
        test whether c1=c2 or c1 yields c2 in one step
        accept or reject accordingly
  else
        if t>1, then for each configuration cm that uses space f(n)
        run CANYIELD(c1, cm, t/2)
        run CANYIELD(cm, c2, t/2)
 
CANYIELD(c_start, c_accept, 2^(d f(n)))
selecting d so that N has no more than 2^(d f(n)) configurations on f(n) tapes
 
space requirements: at most log( 2^(d f(n)) = O(f(n)) depth of recursions
each requires at most O(f(n)) space, so O(f^2(n)) overall.  THUS:
 
NSPACE(f(n)) subseteq SPACE(f^2(n))
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Tue April 17 Space Complexity Continued
 
SAVITCH’S THEOREM TAKE 2
 
Concepts:
O(f(n)) space → 2^O(f(n)) possible configurations → 2^O(f(n)) time → 2^df(n) for some fixed d
 
Start with O(f(n)) space NTM.
Simulate it with a deterministic TM using recursive algorithm:
 
CANYIELD( c_start, c_accept, 2^df(n) )
 
Each recursive call cuts the time bound in half.  Therefore, the maximum depth of the recursion 
stack is O(log(2^df(n))) = O(df(n)) = O(f(n)).
 
For each recursive call, the stack has to hold the current configuration, which requires O(f(n)) 
space.
 
So, the total space required to hold the stack is O(f(n)) x O(f(n)) = O(f^2(n)).
 
 
 
 

60



PSPACE = U SPACE(n^k)
 
Venn diagram:
 
P  subseteq NP  subseteq PSPACE = NPSPACE subsetq EXPTIME
 

 
PSPACE completeness:
1. B is in PSPACE
2. every A is PSPACE is polytime reducible to B
 
PSPACE hard → no need to check condition (1)
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Quantified Boolean Formulas
 
all x exists y . ((x v y) & (~x v ~y))
 
A fully quantified formula is either TRUE or FALSE.
 
Exercise: true or false?
 
all x . exists y . ( x v y)
 
all x . all y . (x v y)
 
all x . exists y . (x → y)
 
all x exists y . ((x v y) & (~x v ~y))
 
exists x all y . ((x v y) & (~x v ~y))
 
 
TQBF = < <phi> | phi is true fully quantified Boolean formula >
 
Theorem: TQBF is PSPACE-complete.
 
Why is it in PSPACE?
      Simple backtracking recursive algorithm, try T or F for each quantifier.
 
Next: need to show that every language A in PSPACE reduces to TQBF in poly time.
Given polyspace bounded TM for A, define a polytime mapping function from w (input to 
machine) to a QBF that encodes a simulation of the machine on w -- it is true iff machine 
accepts w.
 
Can we use a table of Configurations x Time to generate the encoding, as in Cook-Levin 
theorem?
No, because table could have exponential number of rows (time).
 
Idea: use approach inspired by SAVITCH theorem to construct a encoding by divide and 
conquer.
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Given: M that runs in n^k for some fixed k.
 
Define:
 

formula evaluates to true iff M can go from c1 to c2 in at most t steps.
 

The overall formula for the problem is  where f(n) = n^k
 
As in proof of Cook’s theorem, formula encodes the contents of tape cells.
Each configuration has n^k cells, so each configuration can be encoded by O(n^k) variables.
 

For t=1, formula  asserts that c1=c2 or c1 is followed by c2 in one step.
 
For t>1, construct the formula recursively:
 

where is shorthand for   where the O(n^k) variables encode a 
configuration.
 
This is close to the solution, but the formula is too big - it doubles in size with each recursion.  
Trick to get a small formula is to the universal quantifier to replace the two recursions with one:
 

 

How big is the resulting formula  ? Each subformula is linear in the size of 
a configuration, so it is of size O(f(n)).  There are log(2^df(n)) = O(f(n)) recursions.  Thus, the 
whole formula is size O(f^2(n)).
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Games
 
Relationship between quantifiers and games:
 
E x1 A x2 E x3 Ax4 F
 
Players E and A.
Each chooses a value for a variable in order from left to right.
E wins if F is true,
A wins if F is false.
 
A winning strategy = player can win when both sides play optimally.
 
E x1 A x2 E x3 [ (x1 v x2) & (x2 v x3) & (~x2 v ~x3)]
 
Winning strategy for E: pick 1, then select x3 to the negation of whatever A selects for x2.
 
Formula-Game( F | Player E has a winning strategy for F) = TQBF = PSPACE complete.
 
Observation: Exactly one of the players always has a winning strategy in a formula game!
Why?  (Every quantified formula evaluates to T or F!)
 
Other PSPACE complete games.
 
Geography: two players take turns naming cities, where next city begins with last letter of 
previous city, with no repetitions.  Win if a player is stuck - no more unused cities with letter.
Peoria -> Amerst -> Tuscon -> New York -> Kansas City
 
How modeled as a graph?
 
each node = city
arrow A → B iff B starts with last letter of A
 
Simple path in the graph = does not repeat a node (city)
 
Generalized geography: arbitrary directed graph with designated start node.
CG = {<G,b> | Player I has a winning strategy for generalized geography played on G starting at 
node b}
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Theorem: Generalized Geography is PSPACE complete.
 
Reduction with FORMULA-GAME -- which way?
 
FORMULA-GAME <=p GENERALIZED GEOGRAPHY
 
E x1 A x2 E x3 . F
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