Carefully read the questions.
On the last quiz, we asked you to show that 2-SCHED \(\leq_{p}^{m} \) 2-SAT, by providing a polynomial-time computable function that maps problems in 2-SCHED and turns them into problems in 2-SAT, and maps problems that aren’t in 2-SCHED to something that isn’t in 2-SAT. Show that you can map 2-COLOR to a language containing only one string, \{\epsilon\}.

Write down the reduction here, from 2-COLOR to \{\epsilon\} using \(\leq_{p}^{m} \) notation:

Write down the domain and range of the function, f, that does this mapping:

Now, write down a polynomial-time algorithm that, when given as input a graph that is 2-COLORable, outputs something in the set \{\epsilon\}, and when given input that isn’t such a graph, outputs something not in the set \{\epsilon\}. By writing such an algorithm that always completes, you are proving the existence of a polynomial-time computable function f that creates such a mapping, and therefore proving the reduction:
In class, we showed a way of turning 3-SAT problems into 3-COLOR problems; the output, a graph, could be colored according to the rules of 3-COLOR if and only if the 3-SAT formula had a satisfying assignment.

Here, let us define CLIQUE to be the following problem: given a graph G, and some number k, is there a set of k vertices in G which are each connected to the others by an edge (known as a clique)? More formally, $\text{CLIQUE} = \{<G,k> | G \text{ has a complete subgraph of size } k\}$.

Formally express the reduction, using \leq_{m}^{P}, that shows 3-SAT is no more powerful than CLIQUE.

Write down the domain and range of a function f which will be the polynomial map for the reduction stated above:

We want to prove that there’s some assignment of variables that makes every clause true, if there’s some clique in the output graph, so we want a clique to imply that there’s an assignment which makes every clause true. The graph has three nodes per clause, one for every literal; describe a way to connect them, AND define the value of k, so that this function works as the reduction.
coNP is the class of all languages whose complements are in NP, so a language is in coNP if its complement is in NP. More generally, NP and coNP are classes of languages (or sets of languages), and, formally, if C is a class of languages, coC is another class of languages, such that $L \in \text{coC} \iff L^c \in C$ (for L^c being the complement of the language L).

Prove that, for any two classes C and D, if $C \subseteq D$, then $\text{coC} \subseteq \text{coD}$.