NP-Complete Problems

CSC 282

3 2 3 3
4
1
4
3 2
6

The Story So Far

* NP

* Decision problems that can be solved in polynomial time on a non-
deterministic Turing Machine

e Search problems whose solution can be verified in polynomial time

* Reduction: a polynomial time transformation A—B

Of problems in class A to problems in class B, and

Of solutions in class B to solutions in class A

Hardness goes —, easiness goes +

SAT = CNF-SAT = 3SAT

Graph Coloring Problem

Graph Coloring Problem

Given a graph G, can you color the nodes with < k colors such
that the endpoints of every edge are colored differently?

Notation: A k-coloring is a function f : V — {1,..., k} such that
for every edge {u, v} we have f(u) # f(v).

If such a function exists for a given graph G, then G is k-colorable.

Special case of kK = 2

How can we test if a graph has a 2-coloring?

Check if the graph is bipartite.

Unfortunately, for k > 3, the problem is NP-complete.

Theorem
3-Coloring is NP-complete. l

Reduction from 3-SAT

We construct a graph G that will be 3-colorable iff the 3-SAT
instance is satisfiable.

For every variable x;, create 2 nodes in G, one for x; and one for
x;. Connect these nodes by an edge:

&

Create 3 special nodes T, F, and B, joined in a triangle:

Connecting them up

Connect every variable node to B:

Properties

Properties:

e Each of x; and x; must get different colors
e Each must be different than the color of B.

e B, T, and F must get different colors.

Hence, any 3-coloring of this graph defines a valid truth
assignment!

Still have to constrain the truth assignments to satisfy the given
clauses, however.

Connect Clause (t, tp, t3) up like this:

NP

Suppose Every Term Was False

What if every term in the clause was assigned the false color?

Connect Clause (t, t», t3) up like this:

N

® ® @

Connect Clause (ty, tp, t3) up like this:

9 (®)
)

®
® ® @

Connect Clause (ty, tp, t3) up like this:

9 (®)
)

®
® ® @

Suppose there 1s a 3-coloring

Top node is colorable iff one of its terms gets the true color.

Suppose there is a 3-coloring.

We get a satisfying assignment by:
o Setting x; = true iff v; is colored the same as T
Let C be any clause in the formula. At least 1 of its terms must be

true, because if they were all false, we couldn’'t complete the
coloring (as shown above).

Suppose there is a satisfying assignment

Suppose there is a satisfying assignment.

We get a 3-coloring of G by:

e Coloring T, F, B arbitrarily with 3 different colors

e |f x; = true, color v; with the same color as T and v; with the
color of F.

o |f x; = false, do the opposite.

e Extend this coloring into the clause gadgets.

Hence: the graph is 3-colorable iff the formula it is derived from is
satisfiable.

3SAT—|ndependent Set

* Independent Set: Given a graph G and number g,
find a set of g pairwise non-adjacent vertices

The graph corresponding to (z VyVZ) (xVyVz) (xVyVz) (ZTVY). I

Y @\ /J\ Y

\‘

NP-Complete

e A problem is NP-Complete if

e [tisin NP

« Any problem in NP can be

reduced to it
o SAT is NP-Complete

e Short proof:

e Circuit-SAT — SAT

/
N

(2 ? (2)

__/ __/ __/

* Any problem solvable by a Turing Machine in polynomial time
can be solved by circuit of polynomial size

A Slightly Longer Proof

e Instead of a non-deterministic Turing Machine, consider
an equivalent model of computing:

o An ordinary (von-Neumann) style computer with a
polynomial amount of (binary) RAM

e Non-deterministic “choose” instruction
choose { x=1;} or { x=2;}
e FATL Instruction means answer IS “no’

o Answer is “yes” is some series of choices does not
end in a fall

Simulation

Write a Boolean formula that simulates the
operation of this machine

Boolean variable for each memory location at each
time step (recall that time is bounded!)

Boolean variables for the instruction counter and
registers at each time step

Write implications that capture the instruction set

State Transition Formulas

at time 1:

iInstruction counter is 0001 &

iINnstruction at location 0001 Is "iIncrement” &
argument to instruction is location 0101 &
value at location 0101 1s "0" =

at time 2:
value at location 0101 1s “1”

| ooking Aheao

e Last assignment #5 given out Monday
* Will not be turned in

e |nstead, material will be covered in exam on last
day of class, Dec 12

Kinds of Transitions

* Deterministic transition: formula exactly specifies
the state after the execution of the instruction

e Non-deterministic transition: formula allows 2 or
more states to possibly result from the execution of

an Instruction

* [ransition to FAIL: a deliberately inconsistent
subtformula

Reduction

For any problem in NP, there is an algorithm with
some time polynomial time bound p

Encode a non-deterministic computer with time and
space bound p

Encode the program itselt and its input as the initial
state of the computer

Formula is satistiable iff program does not
necessarily fail (answer “no”)

