
CSC 284/484 Advanced Algorithms - applied homework 1
due: April 5th midnight EST

(email source + output on the test input to the instructor)

This homework has different rules than the theoretical homework, most importantly, do not
discuss any aspect of the applied problem with anybody else (except me), do not search for a
solution online, do not use any written material when writing any part of the code (for example,
no copy-paste, no open textbook when writing code, no reediting of an old source file from an old
project, etc).

DEFINITIONS: Let w ∈ Σ∗ be word. The length of w is denoted by |w|, the i-th character of
w is denoted w[i] (we number the positions in w from 0 to |w| − 1). A subsequence of w is a
word w[a1]w[a2] . . . w[ak] where 0 ≤ a1 < a2 < · · · < ak ≤ |w| − 1. The reverse of w is the word
wR := w[|w|− 1]w[|w|− 2] . . . w[1]w[0]. A word is called a palindrome if w = wR. We let w1 := w.

We are going to consider the following problem:

Given a sequence of words w1, . . . , wn ∈ Σ∗ find a1, . . . , an ∈ {1, R}
such that the word

wa1
1 wa2

2 . . . wan
n

contains, as a subsequence, the longest possible palindrome.

For example if n = 3, w1 = abcd, w2 = ocod, and w3 = ab, then w1
1w2w

R
3 = abcddocoba contains

(as a subsequence) a palindrome of length 9 (abdocodba).
The problem can be solved using dynamic programming. Solve it and implement the solution.

Your program should read the input from standard input (that is, if you execute it on a unix
system you can feed it a file using ./a.out < file). Your program should output the results to
the standard output.

INPUT FORMAT:

• the first line contains an integer n ∈ {1, . . . , 1000},

• the second line contains words w1, . . . , wn ∈ Σ∗ separated by spaces
(we have Σ = {a, b, c, d, e, . . . , z}). Assume |wi| ≤ 5000.

OUTPUT FORMAT:

• the first line contains the length of the longest palindrome,

• the second line contains the words wa1
1 , wa2

2 , . . . , wan
n separated by space

(where a1, . . . , an ∈ {1, R} is the optimal solution),

• the third line contains the palindrome.

1

EXAMPLE INPUT:

3

abcd ocod ab

EXAMPLE OUTPUT:

8

abcd ocod ba

abdocodba

The objective of this section is to allow you to obtain sufficient problem-solving background to
tackle the applied problem—solve but do NOT turn in. If you don’t know how to solve any of
the problems 1.1 to 1.8—ask your peers and/or ask for a solution in the problem session/office
hours/email. Variation of one of the problems below can be included in Exam #3 or final. Each
problem below can be solved using dynamic programming

1.1 We are given an n × n array A of zeros and ones. Give an algorithm to find the size of the
largest contiguous all-ones square. Your algorithm must run in time O(n2).

1.2 We are given n positive numbers a1, . . . , an (the numbers are not necessarily integers). The
goal is to select a subset of the numbers with maximal sum and such that no three consecutive
numbers are selected. Here are three example inputs together with optimal solutions (the numbers
in boxes are selected):

5 5 8 5 5

5 5 12 5 5

1 2 2 1 2 1 2 5 5

Give an O(n)-time algorithm for the problem.

1.3 We are given n positive integers a1, . . . , an and another positive integer M . We want to figure
out if we can select a subset of the integers which sums to M . Give an O(Mn)-time algorithm for
the problem.

1.4 We are given n coin values c1, c2, . . . , cn and an amount P (the ci and P are positive integers).
Unlike in the original coin change problem (where we had an unlimited supply of each coin value)
we now have only 2 of each coin value. We would like to figure out whether we can pay P , and if
we can, what is the minimal number of coins that can be used to pay P . Give an efficient algorithm
for the problem.

For example if the coin values are 1, 2, 5, 6 and P = 15 then the answer is yes - use 5 coins (since
15 = 6 + 6 + 2 + 1 or 15 = 6 + 5 + 2 + 2). (Note that we cannot pay 15 = 5 + 5 + 5, since we have
only 2 coins of value 5.)

1.5 Write a dynamic programming algorithm which for a given number n finds the smallest number
of squares which sum to n (for example for n = 7 we need 4 squares (7 = 22 +12 +12 +12), whereas
for n = 13 we only need 2 squares (13 = 32 + 22)). Implement your algorithm and find all numbers
from {1, 2, . . . , 100} which need 4 squares. Use “The On-Line Encyclopedia of Integer Sequences”
to find a formula for the numbers which need 4 squares.

2

1.6 We are given a sequence of n positive numbers a1, . . . , an. Give an algorithm which finds the in-
creasing subsequence1 of a1, . . . , an with the maximal sum. (For example on input 1, 101, 2, 3, 100, 4, 5
your algorithm should output 1, 2, 3, 100.)

1.7 Given a string x = x1x2 · · ·xn we would like to find the length of the longest palindromic
subsequence1of x (a sequence is palindromic if it is the same as its reverse). Let T [1..n, 1..n] be
an array where T [i, j] is the length of the longest palindromic subsequence of xi, . . . , xj (note that,
T [i, j] is undefined for j < i). Give an expression (or a piece of code) for T [i, j] in terms of already
computed values in T .

1.8 We have an a× b bar of chocolate (where a, b are integers). By breaking the bar we can either

• create two bars a1 × b and a2 × b where a1, a2 are integers and a1 + a2 = a, or

• create two bars a× b1 and a× b2 where b1, b2 are integers and b1 + b2 = b.

We can further break the resulting bars. Our goal is to 1) end up with bars that are square and 2)
minimize the total number of breaks.

For example, if a = 2 and b = 3 then we use 2 breaks:

2× 3 →
2× 2 and 2× 1 →

2× 2 and 1× 1 and 1× 1.

For example, if a = 2 and b = 4 then we use 1 break:

2× 4 →
2× 2 and 2× 2.

Give a dynamic programming algorithm which computes a table T [1..a, 1..b] where T [x, y] contains
the minimal number of breaks to “squareize” an x× y bar.

1A subsequence of a1, a2, . . . , an is any ai1 , ai2 , . . . , aik
, where 1 ≤ i1 < i2 < · · · < ik ≤ n. Thus, e. g., 1, 3, 5 is a

subsequence of 1, 2, 3, 4, 5.

3

