A Scheduling Approach to Coalitional Manipulation
A presentation on the paper authored by Lirong Xia, Vincent Conitzer, Ariel D. Procaccia

Rupam Acharyya

March 25, 2015
Outline

- Coalition Manipulation Problem
Outline

- Coalition Manipulation Problem
- Connection between coalition manipulation and scheduling
Outline

- Coalition Manipulation Problem
- Connection between coalition manipulation and scheduling
- Coalition Optimization Problem
Outline

- Coalition Manipulation Problem
- Connection between coalition manipulation and scheduling
- Coalition Optimization Problem
- Tightness
Outline

- Coalition Manipulation Problem
- Connection between coalition manipulation and scheduling
- Coalition Optimization Problem
- Tightness
- Future Research
\begin{itemize}
 \item C be the set of alternatives.
\end{itemize}
• C be the set of alternatives.
• $L(C)$ be the set of all linear orders (Transitive and Antisymmetric and total relation).
Notations and Definitions

- C be the set of alternatives.
- $L(C)$ be the set of all linear orders (Transitive and Antisymmetric and total relation).
- $\Delta L(C)$ be the set of all convex combinations over $L(C)$.

An indivisible vote is a linear order over C i.e. an element of $L(C)$.

A divisible vote is an element of $\Delta L(C)$.

Rupam Acharyya
A Scheduling Approach to Coalitional Manipulation
C be the set of alternatives.

$L(C)$ be the set of all linear orders (Transitive and Antisymmetric and total relation).

$\Delta L(C)$ be the set of all convex combinations over $L(C)$.

An indivisible vote is a linear order over C i.e. an element of $L(C)$.
Notations and Definitions

- C be the set of alternatives.
- $L(C)$ be the set of all linear orders (Transitive and Antisymmetric and total relation).
- $\Delta L(C)$ be the set of all convex combinations over $L(C)$.
- An **indivisible** vote is a linear order over C i.e., an element of $L(C)$.
- A **divisible** vote is an element of $\Delta L(C)$.

Rupam Acharyya

A Scheduling Approach to Coalitional Manipulation
Convex combination of n vectors $\vec{a}_1, \ldots, \vec{a}_n$ is defined as:

$$\sum_{i=1}^{n} \alpha_i \cdot \vec{a}_i$$

where α_i's are scalars and $\sum_{i=1}^{n} \alpha_i = 1$
Formal Definitions

Definition

The Unweighted Coalitional Manipulation (UCM) problem is defined as follows. An instance is a tuple \((r, P^{NM}, c, k)\), where \(r\) is a voting rule, \(P^{NM}\) is the non-manipulators profile, \(c\) is the alternative preferred by the manipulators, and \(k\) is the number of manipulators. We are asked whether there exists a profile \(P^M\) of indivisible votes for the manipulators such that \(c \in r(P^{NM} \cup P^M)\).

Definition

The Weighted Coalitional Manipulation (WCM) problem is defined as follows. An instance is a tuple \((r, P^{NM}, \vec{w}_{NM}, c, k, \vec{w}_M)\), where \(r\) is a voting rule, \(P^{NM}\) is the non-manipulators profile, \(\vec{w}_{NM}\) represents the weights of \(P^{NM}\), \(c\) is the alternative preferred by the manipulators, \(k\) is the number of manipulators, and \(\vec{w}_M = (w_1, \ldots, w_k)\) represents the weights of the manipulators. We are asked whether there exists a profile \(P^M\) of indivisible votes for the manipulators such that \(c \in r((P^{NM}, P^M), (\vec{w}_{NM}, \vec{w}_M))\).
Definition

The Unweighted Coalitional Manipulation (UCM) problem is defined as follows. An instance is a tuple \((r, P^{NM}, c, k)\), where \(r\) is a voting rule, \(P^{NM}\) is the non-manipulators profile, \(c\) is the alternative preferred by the manipulators, and \(k\) is the number of manipulators. We are asked whether there exists a profile \(P^M\) of indivisible votes for the manipulators such that \(c \in r(P^{NM} \cup P^M)\).

Definition

The Weighted Coalitional Manipulation (WCM) problem is defined as follows. An instance is a tuple \((r, P^{NM}, \vec{w}^{NM}, c, k, \vec{w}^M)\), where \(r\) is a voting rule, \(P^{NM}\) is the non-manipulators profile, \(\vec{w}^{NM}\) represents the weights of \(P^{NM}\), \(c\) is the alternative preferred by the manipulators, \(k\) is the number of manipulators, and \(\vec{w}^M = (w_1, \ldots, w_k)\) represents the weights of the manipulators. We are asked whether there exists a profile \(P^M\) of indivisible votes for the manipulators such that \(c \in r((P^{NM}, P^M), (\vec{w}^{NM}, \vec{w}^M))\).
The Unweighted Coalitional Optimization (UCO) problem is defined as follows. An instance is a tuple \((r, P^{NM}, c)\), where \(r\) is a voting rule, \(P^{NM}\) is the non-manipulators profile, and \(c\) is the alternative preferred by the manipulators. We must find the minimum \(k\) such that there exists a a profile \(P^M\) consisting of \(k\) indivisible manipulator votes that satisfies \(c \in r(P^{NM} \cup P^M)\).
Definition

The Unweighted Coalitional Optimization (UCO) problem is defined as follows. An instance is a tuple \((r, P^{NM}, c)\), where \(r\) is a voting rule, \(P^{NM}\) is the non-manipulators profile, and \(c\) is the alternative preferred by the manipulators. We must find the minimum \(k\) such that there exists a a profile \(P^M\) consisting of \(k\) indivisible manipulator votes that satisfies \(c \in r(P^{NM} \cup P^M)\)

Definition

The Coalitional Optimization for divisible votes (COd) problem is defined as follows. An instance is a tuple \((r, P^{NM}, \vec{w}^{NM}, c)\), where \(r\) is a voting rule, \(P^{NM}\) is the nonmanipulators profile, \(\vec{w}^{NM}\) represents the weights of \(P^{NM}\), and \(c\) is the alternative preferred by the manipulators. We are asked to find the minimum \(W^M\) such that there exist a divisible vote \(V^M\) for one manipulator with weight \(W^M\), such that \(c \in r((P^{NM}, \{V^M\}), (\vec{w}^{NM}, W^M))\)
Algorithms for WCM and COD

Rupam Acharyya

A Scheduling Approach to Coalitional Manipulation
Will Devise a poly-time algorithm for the WCMd by a reduction to the well known scheduling problem known as $Q|pmtn|C_{max}$.
Will Devise a poly-time algorithm for the WCMd by a reduction to the well known scheduling problem known as $Q|pmtn|C_{\text{max}}$.

It also solves COD exactly.
Instance of $Q|pmtn|C_{max}$:

- n' jobs $J = \{J_1, \ldots, J_{n'}\}$;
- m' machines $M = \{M_1, \ldots M_{m'}\}$;
- each job J_i has a workload $p_i \in \mathbb{R}^+$, and the processing speed of machine M_i is $s^i \in \mathbb{R}^+$, that is, it will finish s^i amount of work in one unit of time.
- **Preemptions** \(^1\) are allowed.

\(^1\)A preemption is an interruption of the job that is being processed on one machine (the job may be resumed later, not necessarily on the same machine)
Defining Scheduling Problem

Instance of $Q|pmtn|C_{max}$:

- n' jobs $J = \{J_1, \ldots, J_{n'}\}$;
- m' machines $M = \{M_1, \ldots M_{m'}\}$;
- each job J_i has a workload $p_i \in \mathbb{R}^+$, and the processing speed of machine M_i is $s^i \in \mathbb{R}^+$, that is, it will finish s^i amount of work in one unit of time.
- **Preemptions** 1 are allowed.

Question: What is the minimum makespan i.e. the minimum time to complete all the jobs and what is the optimal schedule?

1A preemption is an interruption of the job that is being processed on one machine (the job may be resumed later, not necessarily on the same machine)
After counting non-manipulators’ score let $p_i = \text{non-manipulator score of } c_i - \text{non-manipulator score of } c$.
After counting non-manipulators’ score let $p_i = \text{non-manipulator score of } c_i - \text{non-manipulator score of } c$.

p_i’s can be seen as workload of machine of M_i.

Connection between WCMd under positional scoring rules and $Q|pmtn|C_{\text{max}}$
After counting non-manipulators’ score let $p_i = \text{non-manipulator score of } c_i - \text{non-manipulator score of } c$.

p_i’s can be seen as workload of machine of M_i.

WLOG manipulators will rank c in the top position. So a manipulator vote in which c_j is ranked in the i^{th} position decreases the gap between c_j and c by $s_1 - s_i$ (which is same as speed).
After counting non-manipulators’ score let \(p_i = \) non-manipulator score of \(c_i \) - non-manipulator score of \(c \).

\(p_i \)'s can be seen as workload of machine of \(M_i \).

WLOG manipulators will rank \(c \) in the top position. So a manipulator vote in which \(c_j \) is ranked in the \(i^{th} \) position decreases the gap between \(c_j \) and \(c \) by \(s_1 - s_i \)(which is same as speed).

So we consider \(m - 1 \) machines whose speeds are \(s_1 - s_2, \ldots, s_1 - s_m \) respectively.
So formally for a WCMd instance
\(((s_1, \ldots s_m), P^{NM}, w^{NM}, c, k, (w_1, \ldots, w_k))\) the corresponding
\(Q|pmtn|C_{max}\) instance will have:
Connection between WCMd under positional scoring rules and $Q|pmtn|C_{max}$

So formally for a WCMd instance $((s_1, \ldots, s_m), P^{NM}, w^{NM}, c, k, (w_1, \ldots, w_k))$ the corresponding $Q|pmtn|C_{max}$ instance will have:

- $m - 1$ jobs and $m - 1$ machines.
So formally for a WCMd instance
((s_1, \ldots, s_m), P^{NM}, w^{NM}, c, k, (w_1, \ldots, w_k)) the corresponding
\(Q|pmtn|C_{max}\) instance will have:

- \(m - 1\) jobs and \(m - 1\) machines.
- For any \(i \leq m - 1\) \(s^i = s_1 - s_{i+1}\).
So formally for a WCMd instance
\(((s_1, \ldots, s_m), P^{NM}, w^{NM}, c, k, (w_1, \ldots, w_k))\) the corresponding
\(Q|pmtn|C_{max}\) instance will have:

- \(m - 1\) jobs and \(m - 1\) machines.
- For any \(i \leq m - 1\) \(s^i = s_1 - s_{i+1}\).
- \(p_i = \max\{s^{NM}(c_i) - s^{NM}(c), 0\}\).

Rupam Acharyya

A Scheduling Approach to Coalitional Manipulation
Let $m = 4$, $C = \{c, c_1, c_2, c_3\}$.

The positional scoring rule is Borda (corresponds to scoring vector $(3, 2, 1, 0)$). The non manipulators have weight 1 (unweighted) and $P_{NM} = (V_{NM1}, V_{NM2}, V_{NM3}, V_{NM4})$ is their profile, defined as:

- $V_{NM1} = [c_1 \succ c_2 \succ c_3 \succ c]$
- $V_{NM2} = [c_2 \succ c_1 \succ c_3 \succ c]$
- $V_{NM3} = [c_1 \succ c_3 \succ c \succ c_2]$
- $V_{NM4} = [c_3 \succ c_2 \succ c \succ c_1]$

We have that $s(P_{NM}, c) = 2$, $s(P_{NM}, c_1) = 8$, $s(P_{NM}, c_2) = 7$, $s(P_{NM}, c_3) = 7$.

Rupam Acharyya
A Scheduling Approach to Coalitional Manipulation
Let $m = 4$, $C = \{c, c_1, c_2, c_3\}$.

The positional scoring rule is Borda (corresponds to scoring vector $(3, 2, 1, 0)$).

We have that $s(P_{NM}, c) = 2$, $s(P_{NM}, c_1) = 8$, $s(P_{NM}, c_2) = 7$, $s(P_{NM}, c_3) = 7$.

Rupam Acharyya A Scheduling Approach to Coalitional Manipulation
Let \(m = 4, C = \{ c, c_1, c_2, c_3 \} \).

The positional scoring rule is Borda (corresponds to scoring vector \((3, 2, 1, 0)\)).

The non manipulators have weight 1 (unweighted) and
\[P^{NM} = (V_1^{NM}, V_2^{NM}, V_3^{NM}, V_4^{NM}) \]
is their profile, defined as:

- \(V_1^{NM} = [c_1 \succ c_2 \succ c_3 \succ c] \)
- \(V_2^{NM} = [c_2 \succ c_1 \succ c_3 \succ c] \)
- \(V_3^{NM} = [c_1 \succ c_3 \succ c \succ c_2] \)
- \(V_4^{NM} = [c_3 \succ c_2 \succ c \succ c_1] \)
Let $m = 4$, $C = \{c, c_1, c_2, c_3\}$.

The positional scoring rule is Borda (corresponds to scoring vector $(3, 2, 1, 0)$).

The non manipulators have weight 1 (unweighted) and $P^{NM} = (V_1^{NM}, V_2^{NM}, V_3^{NM}, V_4^{NM})$ is their profile, defined as:

- $V_1^{NM} = [c_1 \succ c_2 \succ c_3 \succ c]$
- $V_2^{NM} = [c_2 \succ c_1 \succ c_3 \succ c]$
- $V_3^{NM} = [c_1 \succ c_3 \succ c \succ c_2]$
- $V_4^{NM} = [c_3 \succ c_2 \succ c \succ c_1]$

We have that $s(P^{NM}, c) = 2$, $s(P^{NM}, c_1) = 8$, $s(P^{NM}, c_2) = 7$, $s(P^{NM}, c_3) = 7$.
Therefore, we construct a $Q|\text{pmtn}|C_{\text{max}}$ instance in which there are 3 machines M_1, M_2, M_3 whose speeds are

- $s^1 = 1$
- $s^2 = 2$
- $s^3 = 3$

corresponding to the 2nd, 3rd and 4th position in the votes respectively,
Therefore, we construct a $Q|pmtn|C_{max}$ instance in which there are 3 machines M_1, M_2, M_3 whose speeds are

- $s^1 = 1$
- $s^2 = 2$
- $s^3 = 3$

corresponding to the 2nd, 3rd and 4th position in the votes respectively, and 3 jobs J_1, J_2, J_3, whose workloads are
Therefore, we construct a $Q|\text{pmtn}|C_{\text{max}}$ instance in which there are 3 machines M_1, M_2, M_3 whose speeds are

- $s^1 = 1$
- $s^2 = 2$
- $s^3 = 3$

corresponding to the 2nd, 3rd and 4th position in the votes respectively, and 3 jobs J_1, J_2, J_3, whose workloads are

- $p_1 = 6 = (8 - 2)$
- $p_2 = 5 = (7 - 2)$
- $p_3 = 5 = (7 - 2)$

respectively.
Figure 1: An example schedule. The machines are idle in shaded areas.
Some notations

- We say that t is a preemptive break point if there is a preemption at time t.

Some notations

- We say that t is a preemptive break point if there is a preemption at time t.
- Let B_f be the set of all preemptive break points of scheduling f.
Example: The minimum makespan of the scheduling problem instance in previous example is \((6 + 5)/5 = 11/5\). An optimal schedule \(f\) is as follows:

- \(M_1\): For any \(0 \leq t \leq 11/5\), \(f(M_1, t) = J_3\)
- \(M_2\): For any \(0 \leq t \leq 8/5\), \(f(M_2, t) = J_2\); for any \(8/5 < t \leq 11/5\), \(f(M_2, t) = J_1\)
- \(M_3\): For any \(0 \leq t \leq 8/5\), \(f(M_3, t) = J_1\); for any \(8/5 < t \leq 11/5\), \(f(M_3, t) = J_2\)

\(t = 8/5\) is the only preemptive break point in this schedule.
Assign jobs to idle machines arbitrarily.
Assign jobs to idle machines arbitrarily.

If there are no preemption break points in \((W_{i-1}, W_i)\), we let manipulator \(i\) vote for
\[c \succ f(M_1, W_{i-1+\epsilon}) \succ f(M_2, W_{i-1+\epsilon}) \succ \ldots \succ f(M_{m1}, W i - 1 + \epsilon), \]
where \(\epsilon > 0\) is sufficiently small.
Assign jobs to idle machines arbitrarily.

If there are no preemption break points in \((W_{i-1}, W_i)\), we let manipulator \(i\) vote for
\[c > f(M_1, W_{i-1} + \epsilon) > f(M_2, W_{i-1} + \epsilon) > \ldots > f(M_{m_1}, W_i - 1 + \epsilon), \]
where \(\epsilon > 0\) is sufficiently small.

If there are preemptive break points in \((W_{i_1}, W_i)\), denoted by
\(T_a, T_{a+1}, \ldots, T_{a+b-1}\), then we let \(V_1^i, \ldots, V_{b+1}^i\) denote the orders that correspond to the schedule at times \(W_{i-1} + \epsilon, T_a + \epsilon, \ldots, T_{a+b-1} + \epsilon\), respectively. Let
\[\alpha_1^i = T_a W_{i-1}, \ldots, \alpha_{b+1}^i = W_i T_{a+b-1}. \]
We let manipulator \(i\) vote for
\[\sum_{j=1}^{b+1} \left[\alpha_j^i / (W_i - W_{i-1}) \right] \cdot V_j^i. \]
Figure 2: Conversion of an optimal schedule to a solution for WCMd.
Suppose there are two manipulators whose weights are w_1 and w_2 as in Figure 2.

- Manipulator 1 votes $[(1/4)(c \succ c_1 \succ c_3 \succ c_2) + (1/4)(c \succ c_1 \succ c_2 \succ c_3) + (1/2)(c \succ c_2 \succ c_1 \succ c_3)];$
Suppose there are two manipulators whose weights are w_1 and w_2 as in Figure 2.

- Manipulator 1 votes $[(1/4)(c \succ c_1 \succ c_3 \succ c_2) + (1/4)(c \succ c_1 \succ c_2 \succ c_3) + (1/2)(c \succ c_2 \succ c_1 \succ c_3)]$;
- Manipulator 2 votes $(1/3)(c \succ c_2 \succ c_1 \succ c_3) + (1/3)(c \succ c_2 \succ c_3 \succ c_1) + (1/3)(c \succ c_3 \succ c_2 \succ c_1)$;
Here is the pseudocode...

```
Algorithm 1: compWCMd
1. \( \forall i \leq m - 1, s^i \leftarrow s_1 - s_{i+1} \)
2. \( \forall i \leq m - 1, p_i \leftarrow \max \{s(P^{NM}, w^{NM}, c), s(F^{NM}, w^{NM}, c), 0\} \)
3. Solve the \( Q[p_m n i, C_{max}] \) instance (for example, using the algorithm in [13]). Let \( w \) and \( f \) denote the minimum makespan and an extended optimal schedule; let \( T_1, \ldots, T_k \) denote the preemptive break points.
4. if \( w > W_k \) then
5. \( \text{return } \text{false.} \)
6. end
7. Let \( f' : M \times [0, W_k] \rightarrow J \) be such that \( f'(M_1, t), \ldots, f'(M_{m-1}, t) \) = \( \{J_1, \ldots, J_{m-1}\} \), and for any \( M \in M, t \in [0, W_k], \) we have that if \( f(M, t) \in J \), then \( f'(M, t) = f(M, t) \).
8. for \( i = 1 \) to \( k \) do
9. \( V_i = [c > f'(M_1, W_{i-1} + \epsilon) > \ldots > f'(M_{m-1}, W_{i-1} + \epsilon)] \)
10. \( j \leftarrow 2 \)
11. for each preemptive break point \( T \in (W_{i-1}, W_i) \) (in order) do
12. \( V_j = [c > f'(M_1, T + \epsilon) > \ldots > f'(M_{m-1}, T + \epsilon)] \)
13. \( j \leftarrow j + 1 \)
14. end
15. For any \( j \), let \( \alpha^j \) be the length of the \( j \)th interval in \([W_{i-1}, W_i]\) induced by the preemptive break points.
16. Let manipulator \( i \) vote \( \sum_j [\alpha^j/(W_i - W_{i-1})] \cdot V_j \), and add this vote to \( P\).
17. end
18. return \( P \)
```

So we have the following theorem:

Theorem

Algorithm 1 solves WCMd and WCO (exactly) in polynomial time.
Can we apply Algorithm 1 for this case too??
Can we apply Algorithm 1 for this case too??

Problem: Algorithm 1 cannot be directly applied to WCM, because the manipulators votes constructed in Line 16 can be divisible.
Here is the solution!!

Algorithm 2: compWCMi

This algorithm is the same as Algorithm 1, except for the following two lines:

3. Use the algorithm in [13] to solve the scheduling problem

16. Let manipulator i vote for $V_{j^*}^i$, where for any $j \neq j^*$, $\alpha_{j^*}^i \geq \alpha_j^i$; and for any $j \neq j^*$, we add a new manipulator whose weight is α_j^i, and let her vote V_j^i

Let the coalitional manipulation problem instance be the same as in Example 1. Suppose we have two manipulators whose weights are both 1; then, because the minimum makespan is $11/5 > 2$ (as observed in earlier), there is no solution to the WCMd and WCM problem instances. The solution to the COd problem instance is $11/5$.
Now suppose we have two manipulators, whose weights are \(w_1 = 1 \) and \(w_2 = \frac{6}{5} \), respectively. Let \(f \) be the optimal schedule defined in earlier. A solution to the \(WCMD \) problem instance is obtained as follows. Manipulator 1 votes \([c > c_3 > c_2 > c_1]\), and manipulator 2 votes \([(1/2)(c > c_3 > c_2 > c_1) + (1/2)(c > c_3 > c_1 > c_2)]\). For \(WCM \), the vote of manipulator 1 is the same, the vote of manipulator 2 is \([c > c_3 > c_2 > c_1]\), and there is one additional manipulator, whose weight is \(\frac{3}{5} \) and whose vote is \([c > c_3 > c_1 > c_2]\).
Suppose there are two manipulators whose weights are illustrated in Figure 2.

- The vote of manipulator 1 is $c > c_2 > c_1 > c_3$, and we introduce two new manipulators with weight $w_1/4$ whose votes are $c > c_1 > c_3 > c_2$ and $c > c_1 > c_2 > c_3$;
Suppose there are two manipulators whose weights are illustrated in Figure 2.

- The vote of manipulator 1 is \(c > c_2 > c_1 > c_3 \), and we introduce two new manipulators with weight \(w_1/4 \) whose votes are \(c > c_1 > c_3 > c_2 \) and \(c > c_1 > c_2 > c_3 \);
- The vote of manipulator 2 is \(c > c_2 > c_1 > c_3 \), and we introduce two new manipulators with weight \(w_2/3 \) whose votes are \(c > c_2 > c_3 > c_1 \) and \(c > c_3 > c_2 > c_1 \).
Suppose there are two manipulators whose weights are illustrated in Figure 2.

- The vote of manipulator 1 is $c \succ c_2 \succ c_1 \succ c_3$, and we introduce two new manipulators with weight $w_1/4$ whose votes are $c \succ c_1 \succ c_3 \succ c_2$ and $c \succ c_1 \succ c_2 \succ c_3$;
- The vote of manipulator 2 is $c \succ c_2 \succ c_1 \succ c_3$, and we introduce two new manipulators with weight $w_2/3$ whose votes are $c \succ c_2 \succ c_3 \succ c_1$ and $c \succ c_3 \succ c_2 \succ c_1$.

Since $|B_f|$, the number of break points is 4, there are in total four additional manipulators.
As for any $j \neq j^*$ $\alpha_j^i \leq (W_i - W_{i-1})/2 \leq W/2$ we have the following lemma

Lemma

If $w \geq W_k$, then there is no successful manipulation for WCMd (nor for WCMi); otherwise, Algorithm 2 returns a manipulation with at most $|B_f|$ additional manipulators, each with weight at most $W/2$.
$|B_f|$ depends on the algorithm.
$|B_f|$ depends on the algorithm. But we have the following lemma:

Lemma

The number of preemptive break points in the solution of the algorithm of Gonzalez and Sahni\(^a\) is at most $m'1$. Furthermore, this bound is tight.

Hence we have the theorem...

Theorem

Algorithm 2 runs in polynomial time and

- *if the algorithm returns false, then there is no successful manipulation;*

- *otherwise, the algorithm returns a successful manipulation with a set of at most \(m - 2 \) additional manipulators, each with weight at most \(W/2 \).*
UCMd can be solved using the same algorithm (assuming weight = 1).
UCMd can be solved using the same algorithm (assuming weight = 1).

Interesting Case: Indivisible one.
UCMd can be solved using the same algorithm (assuming weight = 1).

Interesting Case: Indivisible one.

Tweak Algorithm 2.
Here is the algorithm...

Algorithm 3: compWCMi

This algorithm is the same as Algorithm 1, except for the following two lines:

16. Let manipulator \(i \) vote for \(V_1^i \); for any \(j > 1 \), we add a new manipulator who votes for \(V_j^i \).
Hence we have the following corollary...

Corollary

For UCMi, if Algorithm 3 returns false, then there is no successful manipulation; otherwise, Algorithm 3 returns a successful manipulation with at most m^2 additional manipulators.
Algorithm 3 is an approximation algorithm for UCO.

Lemma

Let $k \in 1, \ldots, m$. UCMi/UCOi under k-approval is in P.
Algorithm 3 is an approximation algorithm for UCO.

But there are some positional scoring voting rules under which UCM/UCO can be solved exactly.
Algorithm 3 is an approximation algorithm for UCO.

But there are some positional scoring voting rules under which UCM/UCO can be solved exactly.

Lemma

Let $k \in 1, \ldots, m_1$. UCM_i/UCO_i under k-approval is in P.
On the tightness of the results

Theorem

For any \(m \geq 3 \), there exists a UCO instance such that the (additive) gap between the optimal solution to UCOd and the optimal solution to UCOi is \(m - 2 \).
Proof of the theorem

For any \(m \geq 3 \) let

- the scoring vector is \((m(m1)(m2)1, \ldots, m(m1)(m2)1, m(m1)(m2)2, 0)\)
- \(V = [c_1 \succ \ldots c_{m-1} \succ c] \)
- Let \(\pi \) be the cyclic permutation on \(C\{c\} \).
- Let \(V_i \) be the linear order over \(C \) in which \(c \) is ranked in position \((m1) \) defined by \(\pi^i(c_1) \succ \pi^i(c_{m-1}) \)
- Let \(P = (V, V_1, \ldots, V_{m1}) \) and \(P^{NM} = P \cup \pi(P) \cup \ldots \cup \pi^{m-2}(P) \)

It can be verified that for \(V' = [c, c_1, \ldots, c_{m-1}] \) the divisible vote

\[
\frac{1}{m-1}(V', \pi(V'), \pi^2(V'), \ldots, \pi^{m-2}(V'))
\]

is sufficient to make \(c \) win.
We next prove that the solution to UCO is $m1$. Clearly the profile $(V', \pi(V'), \pi^2(V'), \ldots, \pi^{m-1}(V'))$ is a successful manipulation. Hence, it remains to show that the solution is at least $m - 1$. For the sake of contradiction we assume that the solution is $m - 2$, and P^M is the corresponding successful manipulation. Therefore, there must exist $i \leq m - 1$ such that c_i is not ranked at the bottom of any of the votes of P^M. Therefore,

$$s(P^M, c) - s(P^M, c_i) \leq m - 2 \leq (m - 1)^2 - 1$$

(1)

which means that $s(P^{NM} \cup P^M, c) - s(P^{NM} \cup P^M, c_i) < 0$ This contradicts the assumption that P^M is a successful manipulation.
Let A be an approximation algorithm based on WCO. For any $m \geq 3$, there exists a UCO instance such that the gap between the optimal solution to $UCOi$ and the output of A is m^2.
Proof of theorem

For any \(m \geq 3 \), we construct an instance such that the solution to the UCO problem is 1, but at least \(m \) linear orders appear in any optimal solution to the COd problem (so the gap is \(m \)). We let the scoring vector be \((m + 2, 1, 0, \ldots, 0)\). Let

\[
V = [c \succ c_1 \succ \ldots \succ c_{m-1}]
\]

and

\[
V' = [c_{m-1} \succ c_1 \succ c \succ c_2 \succ \ldots \succ c_{m-2}]
\]

Furthermore, let \(\pi : c_1 \to c_2 \to \ldots \to c_{m-1} \to c \) and \(\pi^* : c \to c_1 \to \ldots \to c_{m-1} \to c \). We define preference profiles by letting

\[
P = \left(V', V, \pi^*(V), (\pi^*)^2(V), \ldots (\pi^*)^{m-2}(V) \right)
\]

and

\[
P^{NM} = P \cup \pi(P) \cup \ldots \cup \pi^{m-2}(P)
\]
We have that \(s(P, c) = m + 2 \), \(s(P, c_1) = m + 4 \), and for any \(2 \leq i \leq m - 1 \), \(s(P, c_i) = m + 3 \). Therefore,
\[s(P^{NM}, c) = (m + 2)(m - 1) \]
and for any \(2 \leq i \leq m - 1 \),
\[s(P^{NM}, c_i) = (m + 3)(m - 1) + 1. \] Therefore, for any \(i \leq m - 1 \),
\[s(P^{NM}, c_i) - s(P^{NM}, c) = m. \] It follows that one manipulator suffices to make \(c \) the winner (by voting \(c \succ c_1 \succ ... \succ c_{m-1} \)).

On the other hand, the minimum weight for COd is \((m - 1)/m\) for example,

\[
V^M = \frac{m-1}{m} \left(\frac{1}{m-1} V + \frac{1}{m-1} \pi(V) + ... + \frac{1}{m-1} \pi^{m-2}(V) \right) \quad (6)
\]

In any manipulators vote corresponding to the minimum total weight, every alternative except \(c \) must appear in the second position for a fraction of the vote. Therefore, any algorithm based on COd must output at least \(m - 1 \) linear orders.
Theorem

UCM under a specific voting rule is strongly NP-complete, even when the number of manipulators is two.
Future Research

Question 1: Is there a polynomial-time algorithm that gives an additive approximation of less than m^2 to UCO under all positional scoring rules?
Question 2: What additive approximation to UCO does the Greedy algorithm give for positional scoring rules?
Question 3: Is UCM under Borda NP-complete?
THANK YOU!