Definitions of Big-O, etc. (CSC 285, Spring 2015)

Lane A. Hemaspaandra

2015/1/31 (last revised 2015/1/31/115pm)

1 Definitions

These definitions are modeled on those of the book by Greene and Knuth (with some editing and changes). Here, we speak only of functions \(f \) and \(g \) whose codomain is the set of nonnegative integers.

Intuitively, saying \(f(n) = O(g(n)) \) means that, if one is allowed to exclude some prefix of the values of \(n \), for all other (natural-number) values of \(n \), \(f(n) \) is smaller than \(g(n) \), give-or-take a (uniform) multiplicative constant. Now let’s see how one turns that vague statement into a real definition.

Big-O We say that \(f(n) = O(g(n)) \) (sometimes phrased “\(f(n) = O(g(n)) \) as \(n \to \infty \)” but that added part these days is almost always taken as implicitly there) if there exist integers \(n_0 \) and \(k \) such that \(f(n) \leq kg(n) \) for all \(n \geq n_0 \).

Big-Omega We say that \(f(n) = \Omega(g(n)) \) (sometimes phrased “\(f(n) = \Omega(g(n)) \) as \(n \to \infty \)” but that added part these days is almost always taken as implicitly there) if there exist integers \(n_0 \) and \(k \) such that \(f(n) \geq kg(n) \) for all \(n \geq n_0 \).

(Side note: There exist other definitions that differ from this not just syntactically but even semantically, sometimes extremely much so. When reading a paper, always be alert as to how it is using things, and if it defines a notion, do make sure to note if its definition differs from what you were expected.)

Big-Theta If \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \), we say that \(f(n) = \Theta(g(n)) \).

Little-O (which we might not see or use at all, but in case we do...) We say that \(f(n) = o(g(n)) \) (sometimes phrased “\(f(n) = o(g(n)) \) as \(n \to \infty \)” but that added part these days is almost always taken as implicitly there) if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \).
2 Examples

Here are a few examples.

True: \[n = O(n^2). \]
True: \[n = O(2^n). \]
True: \[2015n = \Theta(n). \]
True: \[n = O(n \log n). \]
True: \[n + 1/(n + 1) = \Theta(17n + 3454321). \]
True: \[n^2 = \Omega(n). \]
True: \[n + \log n = \Theta(n). \]
True: \[n = o(n^2). \]
False: \[2015n = o(n). \]

The kind of detailed proving of Big-O examples that you can find in books or on the Internet (e.g., although if you try to cut and paste these address be careful about the ~ as it won’t cut and paste right, http://pages.pacificcoast.net/~cazelais/222/big-o.pdf and http://web.eecs.utk.edu/~booth/311-01/notes/bigOex.html) generally isn’t of interest to us in this course, since for the cases we’ll hit, usually things are clear and intuitive.

3 How We’ll Encounter This Notation

For us, we’ll most typically encounter big-O notation regarding the running time of programs. For a particular program, consider the function \(f(n) \) such that \(f(n) \) is the largest number of steps that the program runs for any input whose “size” (typically: number of bits or number of characters) is \(n \) (so we’re taking a maximum, over all the different inputs of size \(n \)). This is called the “run-time” or the “running time” of that program. Then the type of claim one often sees is, “The running time of Algorithm A is \(O(n^2) \).”

However, big-O can be used in other contexts. For example, it is true that the number of binary strings of length at most \(n \) is \(O(2^n) \), although it would be true and more precise simply to state (as can be easily proved by induction) that the number of binary strings of length at most \(n \) is exactly \(O(2^n + 1 - 1) \).

As a coda, which happens not to be about big-O notation: If there exists a polynomial \(p(n) \) such that “the running time of (deterministic) Algorithm A is, for each \(n \), less than or equal to \(p(n) \),” then we say that A is a polynomial-time algorithm. And (assuming A is being viewed as a language-accepting machine) the language (i.e., set) that A is accepting is said to belong to the complexity class \(P \), the class of languages that can be accepted in (deterministic) polynomial time.