
CSC 256/456: Operating Systems

Introduction John Criswell!
University of Rochester

1



Logistics

2



Course Instructors

Instructor

Name: John Criswell!
Email: criswell@cs!
Office: CSB 717!
Office Hours: 4:00 - 5:00 Wednesdays

TA

Name: To Be Announced!
Email: To Be Announced!
Office: To Be Announced!
Office Hours: To Be Announced!

3



About Me
❖ Research Interests:!

❖ Computer Security!

❖ Operating Systems!

❖ Compilers!

❖ Trusted Operating Systems: Solaris and AIX!

❖ Protect OS kernel from memory safety attacks!

❖ Protect applications from OS kernels

4



Prerequisites
❖ CSC 252 or equivalent!

❖ C/C++ programming experience on Unix systems

5



Recommended Textbooks
❖ Concepts!

❖ Modern Operating Systems by Andrew Tanenbaum!

❖ Operating System Concepts by Silberschatz et al.!

❖ Linux Kernel Internals!

❖ Understanding the Linux Kernel by Bovet and Cesati!

❖ Professional Linux Kernel Architecture by Mauerer!

❖ Linux Kernel Development by Love!

❖ Unix API!

❖ Advanced Programming in the UNIX Environment by Stevens and Rago

6



Additional Resources
❖ Books available online via the library!

❖ The Design and Implementation of the FreeBSD Operating 
System!

❖ Papers available on the Internet!

❖ Links will be provided on course web page or 
Blackboard

7



Grading for Undergraduates
❖ Five (5) programming assignments: 50%!

❖ Five (5) written homework assignments: 10%!

❖ Midterm exam: 20%!

❖ Final exam: 20%

8



Grading for Graduates
❖ Five (5) programming assignments: 50%!

❖ Five (5) written homework assignments: 10%!

❖ Midterm exam: 15%!

❖ Final exam: 15%!

❖ One end-of-term survey paper: 10%

9



Programming Assignments
❖ Take a look at the internals of a real OS kernel!

❖ Modify Linux kernel internals!

❖ Fun!!

❖ Challenging!!

❖ Start early!

10



Late Policy
❖ Late assignments and homework are not accepted!

❖ Waived for good reasons (e.g., illness, family 
emergency)!

❖ Instructor may request documentation (e.g., doctor’s 
note)!

❖ Other exceptions by consent of the instructor!

❖ E.g., graduate student attending a conference

11



Regrade Requests
❖ Must be submitted in writing!

❖ Due within one week of receiving returned, graded 
assignment

12



Academic Honesty
❖ All homework should be done individually!

❖ All programming assignments should be done 
individually (unless the assignment states otherwise)!

❖ No sharing of code!

❖ Discussion of approaches/kernel APIs okay

13



Course Website
http://www.cs.rochester.edu/courses/256/fall2014!

❖ Basic course information!!

❖ Lecture slides!!

❖ … and fun for the whole family!

14

http://www.cs.rochester.edu/courses/256/fall2014


Blackboard
❖ Programming Assignments!!

❖ Homeworks!!

❖ … and more fun, but just for enrolled students!

15



The Basics

16



Why Study Operating Systems?
❖ Concepts applicable to other types of software!

❖ Multi-threaded applications!

❖ Web browsers!

❖ Network servers

17



Why Study Operating Systems?
❖ Understand the inner workings of an OS kernel!

❖ Learn to use OS features correctly and efficiently!

❖ Learn to develop code that runs within OS kernel!

❖ Learn to design and develop an OS

18



Computer-System Architecture

19



What Is an Operating System?
❖ Software that abstracts the computer hardware!

❖ Hides messy details of underlying hardware!

❖ Present resource abstractions that are easy to use!

❖ Extends or virtualizes underlying machines!

❖ Manages resources!

❖ Coordinates sharing between different users and programs!

❖ Examples: processors, disks, networks, timers, mice

20



Perspectives of the Computer

21

Application 
Software

System 
Software

Hardware

Application 
Software

System 
Software

Hardware

Application 
Software

System 
Software

Hardware

cut
save

print
send

malloc()
fork()

open()
read- 
disk
push-bits-into-NIC

start- 
printer



Abstractions
❖ Processes!

❖ fork, execve, waitpid, exit, kill!

❖ Files!

❖ open, close, read, write, seek!

❖ Directories!

❖ creat, unlink, link, mkdir, rmdir, mount, umount!

❖ Inter-process communication (IPC)!

❖ pipe, socket, System V IPC (msg, shm, sem)

22



Reasons for Abstractions
❖ Reduce functional complexity!

❖ Provide single abstraction over multiple devices!

❖ Resource sharing

23



Objectives when Sharing Resources
❖ Efficiency!
!

❖ Fairness !
!

❖ Security/protection 

7/2/14 CSC 2/456 17

24



How Did We Get Here?

25



History: Batch Systems
❖ Computers were large and expensive!

❖ Shared within an organization!

❖ Operator loaded programs for execution!

❖ Multi-tasking!

❖ When waiting for I/O, start another job!

26



History: Time Sharing Systems
❖ Batch systems had!

❖ Multi-tasking!

❖ Shared resources (e.g., disk)!

❖ Hook up a bunch of monitors and keyboards!

❖ Multi-tasking == people use the computer 
simultaneously!

27



History: Workstations and Microcomputers

❖ Smaller cheaper systems for just one person!

❖ Multi-tasking provided convenience!

❖ Windowing system!

❖ Xerox PARC!

❖ Mac OS 1.0!

❖ Protection provided more stability!

❖ Mac OS X, Windows NT, Linux

28



Examples of Modern Operating Systems

❖ Unix family (evolving since 1969)!

❖ Mac OS X, FreeBSD, Solaris, Linux!

❖ Windows family (evolving since 1989)!

❖ Windows NT, 2000, 7, and 8!

❖ Mobile operating systems!

❖ Most based on the Unix family

29



History: Mobile Systems
❖ Smaller versions of desktops, but!

❖ Finite power (i.e., battery)!

❖ Limited memory!

❖ Higher reliability demands

30



Are operating systems done yet?

31



No!
❖ Adapting to changes in hardware (e.g., multicore)!

❖ Adapting to new uses!

❖ Cloud computing!

❖ Reliability (most commercial OSes poorly designed)!

❖ Security!

❖ Can OS help protect applications?!

❖ Can we protect the OS from attackers?

32



Other System Software
❖ Microkernels!

❖ Exokernels!

❖ Virtual Machines!

❖ Extensible operating systems!

❖ Real time and embedded operating systems!

❖ Safe language operating systems!

❖ And still evolving…

33



On to the first assignment…

34



Programming Assignment #1
❖ Available via Blackboard!!

❖ Completely outside the OS kernel!

❖ Build a shell (command interpreter)!

❖ Support foreground and background processes!

❖ Support pipes!

❖ Support controlling terminal!

❖ Due Sept. 18!

35



Credits
• Parts of the lecture slides contain original work from Gary Nutt, Andrew 

S. Tanenbaum, Dave O’Hallaron, Randal Bryant, Kai Shen, and Sandhya 
Dwarkadas. The slides are intended for the sole purpose of instruction of 
operating systems at the University of Rochester. All copyrighted 
materials belong to their original owner(s). 

36


