
CSC 256/456: Operating Systems

Synchronization
Principles II

John Criswell!
University of Rochester

1

Synchronization Issues
❖ Race conditions and the need for synchronization!

❖ Critical Section Problem!

❖ Mutual Exclusion!

❖ Progress!

❖ Bounded waiting!

❖ Busy waiting vs. Blocking

2

The Good

!

!

!

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter = register1;

3

Counter!
4

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

The Good

!

!

!

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter = register1;

3

Counter!
4

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

Counter!
4

The Other Good

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter = register1;

4

Counter!
4

!

!

!

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

The Other Good

❖ register1 = counter;!

❖ register1 = register1 + 1;!

❖ counter = register1;

4

Counter!
4

!

!

!

❖ register2 = counter;!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

Counter!
4

The Ugly

❖ register1 = counter;!

!

❖ register1 = register1 + 1;!

!

!

❖ counter = register1;

5

Counter!
4

!

❖ register2 = counter;!

!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

The Ugly

❖ register1 = counter;!

!

❖ register1 = register1 + 1;!

!

!

❖ counter = register1;

5

Counter!
4

!

❖ register2 = counter;!

!

❖ register2 = register2 - 1;!

❖ counter = register2;

counter++ counter—

Counter!
5!

Building Synchronization Mechanisms
❖ Atomic hardware instructions!

❖ Mutex (binary semaphore)!

❖ Semaphore

6

Outline
❖ Classical synchronization problems!

❖ Bounded buffer!

❖ Multiple reader/single writers!

❖ Dining philosophers!

❖ Monitors!

❖ Condition variables

7

Classical Synchronization Problems

8

Three Classical Problems
❖ Bounded Buffer Problem!

❖ Multiple Readers/Single Writer Problem!

❖ Dining Philosophers Problem

9

Semaphores on My Mind
❖ Think of a semaphore as a count of available resources!

❖ When the count hits zero, a process must wait!

❖ wait() (or down()) decreases the count of resources!

❖ signal() (or up()) increases the count of resources

10

Bounded Buffer Problem

11

Producer process
!
item nextProduced;!
while (1) {!
! while (counter==BUFFER_SIZE)!
! ! ; /* do nothing */!
! buffer[in] = nextProduced;!
! in = (in+1) % BUFFER_SIZE;!
! counter++;!
}

Consumer process
!
item nextConsumed;!
while (1) {!
! while (counter==0)!
! ! ; /* do nothing */!
! nextConsumed = buffer[out];!
! out = (out+1) % BUFFER_SIZE;!
! counter--;!
}

Out In

CounterShared Data!
typedef struct {…} item;!
item buffer[BUFFER_SIZE];!
int in=0, out=0;!
int counter = 0;

Bounded Buffer Solution
Shared Data!

int n;!
semaphore mutex = 1;!
semaphore empty = n;!
semaphore full = 0;

Semaphore Initialized To… Purpose
mutex 1 Controls access to the buffer
empty n Number of empty slots

full 0 Number of full slots

12

Out In

Counter

Consumer process !

while (1) {!

! wait (full);!

! wait (mutex);!

! remove an item from buffer;!

! signal (mutex);!

! signal (empty);!

! consume item;!

}

Producer process !

while (1) {!

! produce an item;!

! wait (empty);!

! wait (mutex);!

! add nextp to buffer;!

! signal (mutex);!

! signal (full);!

}

Bounded Buffer Solution

13

Can you have a race condition with
only reads?

14

Multiple Readers/Single Writer
❖ Shared resource!

❖ Network routing tables!

❖ Database!

❖ Want to permit concurrent readers!

❖ Writers need exclusive access

15

Multiple Reader/Single Writer

16

Semaphore Initialized To… Purpose

mutex 1 Controls access to read_count

rw_mutex 1 Controls write access

Shared Data!
int read_count = 0;!
semaphore mutex = 1;!
semaphore rw_mutex = 1;

Multiple Reader/Single Writer Solution

Writer Process!
while (1) {!

! wait (rw_mutex);!

! write();!

! signal (rw_mutex);!

}

Reader Process!
while (1) {!

! wait (mutex);!

! read_count++;!

! if (read_count == 1)!

! ! wait (rw_mutex);!

! signal (mutex);!

! read();!

! wait (mutex);!

! read_count—;!

! if (read_count == 0)!

! ! signal (rw_mutex);!

! signal (mutex);!

}
17

Dining-Philosophers Problem

❖ Eating requires both chopsticks (both left and right)!

❖ Need to avoid starvation

18

Philosopher i (1 ≤ i ≤ 5):!

while (1) {!

! eat;!

! think;!

}

Dining Philosophers Solution
Philosopher i!

while(1) {!

! ...!

! wait(chopstick[i]);!

! wait(chopstick[(i+1) % 5]);!

! eat;!

! signal(chopstick[i]);!

! signal(chopstick[(i+1) % 5]);!

! ...!

! think;!

! ...!

};

19

Shared Data !
!

semaphore chopstick[5];!
Initially all values are 1;

Dining Philosophers Solution
Philosopher i!

while(1) {!

! ...!

! wait(chopstick[i]);!

! wait(chopstick[(i+1) % 5]);!

! eat;!

! signal(chopstick[i]);!

! signal(chopstick[(i+1) % 5]);!

! ...!

! think;!

! ...!

};

19

Shared Data !
!

semaphore chopstick[5];!
Initially all values are 1;

Any potential
problems?

Deadlock!
❖ Each philosopher picks up his/her left chopstick!

20

Potential Solutions for Deadlock Problem

❖ Limit eating to 4 philosophers!

❖ Require chopsticks to be picked up in pairs!

❖ Requires a critical section!

❖ Make the pickup algorithm asymmetric!

❖ Even philosophers pick up left stick then right stick!

❖ Odd philosophers pick up right stick then left stick

21

Summary
❖ Mechanisms for solving synchronization!

❖ Atomic hardware instructions!

❖ Mutex!

❖ Semaphore!

❖ Using these mechanisms is fraught with peril!

22

Monitors

23

Monitors
❖ High-level programming

synchronization construct!

❖ Private variables!

❖ Procedures!

❖ Only 1 runs at a time!

❖ Can only access!

❖ Monitor variables!

❖ Formal parameters
24

monitor name {!

! shared variable declarations!

! procedure body P1 (...) {!

! ! . . .!

! }!

! procedure body Pn (...) {!

! ! . . .!

! } !

! {!

! ! initialization code!

! }!

}

Condition Variables
❖ Makes monitors more flexible!

❖ Operations!

❖ wait(): Suspends process!

❖ signal(): Wakes up process

25

monitor name {!

! condition x;!

! condition y;!

! procedure body P1 (...) {!

! ! x.wait ();!

! ! . . .!

! }!

! procedure body Pn (...) {!

! ! . . .!

! ! x.signal();!

! } !

}

Condition Variable Details
❖ var.wait()!

❖ Puts process to sleep!

❖ Waits until someone signals on the same variable!

❖ var.signal()!

❖ Wakes up a process waiting on variable var!

❖ Does nothing if no process is waiting on var

26

Condition Variable Semantics
❖ On signal, can’t have two processes in monitor!

❖ Solutions:!

❖ Waiting process runs, signaling process blocks!

❖ Signal must be followed by monitor exit!

❖ Waiting process continues to wait until signaling
process exits monitors

27

Dining Philosophers Solution
monitor dp {!
! enum {THINKING, HUNGRY, EATING} state[5];!
! condition self[5];! !
! void pickup(int i) {!
! ! state[i] = HUNGRY;!
! ! test(i);!
! ! if (state[i] != EATING)!
! ! ! self[i].wait();!
! }! !
! void putdown (int i) { !
! ! state[i] = THINKING;!
! ! test((i+4)%5);!
! ! test((i+1)%5);!
! }! !
! void test (int i) { !
! ! if (state[(i+4)%5]!=EATING && state[(i+1)%5]!=EATING && state[i] == HUNGRY) {!
! ! ! state[i] = EATING; !
! ! ! self[i].signal();!
! ! }!
! }! !
! void init() {!
! ! for (int i=0; i<5; i++) !
! ! ! state[i] = THINKING;!
! }!
}

28

Other Synchronization Methods

29

Functional Languages
❖ Pure functional languages have no shared memory!

❖ Once a value is created, it is never modified!

❖ No race conditions!

❖ Compiler uses dependencies to parallelize code

30

Actor Languages
❖ Use message passing instead of shared memory!

❖ Actors send messages to each other!

❖ Concurrency issues still exist!

❖ Messages can be asynchronous!

❖ Messages can be reordered!

❖ Implementation may use shared memory
synchronization

31

Wait-free Data Structures
❖ Removes the need to wait!

❖ Operation performs in finite number of steps
regardless of the speed of other processes!

❖ Consensus number!

❖ Ranks ability to implement wait-free systems with
hardware atomic operations!

❖ data structure consensus <= atomic op consensus

32

Consensus Numbers

33

Atomic Op Consensus Number

swap 2

fetch and add 2

test and set 2

compare and swap infinite

A Note About Systems vs. Theory
❖ Synchronization is a combination of Systems and Theory!

❖ Theory!

❖ Explain requirements!

❖ Prove that approaches work properly!

❖ Illuminate limitations of approaches (e.g., consensus numbers)!

❖ Systems!

❖ Hardware support!

❖ Understand which requirements are important in practice

34

Theory and Systems work together

35

Credits and Disclaimer
❖ Parts of the lecture slides contain original work from

Gary Nutt, Andrew S. Tanenbaum, and Kai Shen. The
slides are intended for the sole purpose of instruction of
operating systems at the University of Rochester. All
copyrighted materials belong to their original owner(s). !

❖ Consensus information from Wait-Free Synchronization
by Maurice Herlihy

36

