
10/15/14 CSC 2/456 1

Basic Memory Management

CS 256/456
Dept. of Computer Science, University

of Rochester

10/15/14 CSC 2/456 2

Basic Memory Management
• Program must be brought into memory and placed within a process

for it to be run
!

• Mono-programming
– running a single user program at a time
!

• Need for multi-programming
– utilizing multiple instances of resources (multiple CPUs)
– overlapping I/O with CPU
!

• Memory management task #1:
– Allocate memory space among user programs (keep track of

which parts of memory are currently being used and by whom)

10/15/14 CSC 2/456 3

Running a user program

• User programs go through
several steps before being run

source
program

compiler

object
program

linker

static
library

loadable
program

in-memory
execution

dynamic
library

10/15/14 CSC 2/456 4

Address Binding
Binding of instructions and data to

physical memory addresses can
happen at different stages. !

• Compile&link time:
– If memory location known a priori,

absolute code can be generated
– Must recompile code if starting location

changes

• Load time:
– Must generate relocatable code if

memory location is not known at compile
time.

• Execution time:
– Binding delayed until run time !

• Compare them on flexibility & protection
& overhead

source
program

compiler

object
program

linker

static
library

loadable
program

in-memory
execution

dynamic
library

10/15/14 CSC 2/456 5

Logical vs. Physical Address Space
• Two different addresses for execution-time addressing binding:

– Logical address – those in the loaded user program; often generated
at compile time; will be translated at execution time; also referred to
as virtual address

– Physical address – address seen by the physical memory unit  

• Memory management task #2:
– address translation and protection
!

• Address translation from logical addresses to physical addresses
– pure software translation is too slow
– (mostly) done in hardware

• Memory-mapping unit (MMU): hardware device that maps
virtual to physical address; enforces memory protection
policies

10/15/14 CSC 2/456 6

Contiguous Allocation
• Contiguous allocation

– allocate contiguous memory space for each user program
• MMU: address translation and protection

– Assume that logical address always starts from 0;
– Relocation register contains starting physical address;
– Limit register contains range of logical addresses – each

logical address must be less than the limit register.

10/15/14 CSC 2/456 7

Contiguous Allocation (Cont.)
• Memory space allocation

– Available memory blocks of various size are scattered throughout
memory

– When a process arrives, it is allocated memory from a free block
large enough to accommodate it

– Operating system maintains information about: 
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9

process 10

10/15/14 CSC 2/456 8

Space Allocation Strategies
How to satisfy a request of size n from a list of free memory

blocks (holes)
• First-fit: Allocate the first hole that is big enough.
• Best-fit: Allocate the smallest hole that is big enough; must

search entire list, unless ordered by size. Produces the smallest
leftover hole

• Worst-fit: Allocate the largest hole; max-heap (the data
structure) can help here

Speed & space utilization?

10/15/14 CSC 2/456 9

Fragmentation
• External Fragmentation – total memory space exists to satisfy

a request, but it is not contiguous
!

• Internal Fragmentation – allocated memory may be slightly
larger than requested memory; this size difference is memory
internal to a minimal allocation unit, but not being used
!

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory

together in one large block
– Issues:

• overhead
• problems with programs currently doing I/O

10/15/14 CSC 2/456 10

Pure Segmentation

• One-dimensional address
space with growing pieces

• At compile time, one table
may bump into another
!

• Segmentation:
– generate segmented

logical address at compile
time

– segmented logical address
is translated into physical
address at execution time

10/15/14 CSC 2/456 11

Example of Segmentation

10/15/14 CSC 2/456 12

Sharing of Segments

• Convenient sharing of
libraries

10/15/14 CSC 2/456 13

Segmentation

• Two-dimensional (logical) view of memory
– Segment (independent address space) + offset
– Variable length

• Facilitates sharing (e.g., shared libraries)
• Suffers from the external fragmentation problem
• Solution: segmentation with paging

– E.g., Intel x86

• Contains 6 segment registers

10/15/14 CSC 2/456 14

Paging (non-contiguous allocation)
• Physical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter is
available.
!

• Divide physical memory into fixed-sized blocks called frames
(typically 4KB)
!

• Divide logical memory into blocks of same size called pages
!

• To run a program of size n pages, need to find n free frames
and load program
!

• Internal fragmentation

10/15/14 CSC 2/456 15

Paging: Address Translation Scheme
A logical address is divided

into:
!

• Page number (p) – used as an
index into a page table which
contains base address of
each page in physical memory
!

• Page offset (d) – the offset
address within each page/
frame. The same for both
logical address and physical
address

10/15/14 CSC 2/456 16

Load A User Program: An Example

Before loading After loading

10/15/14 CSC 2/456 17

Implementation of Page Table
• Page table is (usually) kept in main memory

– why not in registers?
– kernel or user space? !

• Hardware MMU:
– Page-table base register points to the page table
– Page-table length register indicates size of the page

table
• In this scheme every data/instruction access requires two memory

accesses: One for the page table and one for the data/instruction !
• Solution:

– A special fast-lookup hardware cache called translation
look-aside buffers (TLBs)

10/15/14 CSC 2/456 18

Paging MMU With TLB

19

Page Table Formats

10/15/14 CSC 2/456 19

Effective Access Time
• Assume

– TLB Lookup = 1 ns
– Memory cycle time is 100 ns

• Hit ratio (α)– percentage of times that a page number is
found in the TLB

• Effective memory Access Time (EAT)
 EAT = 101×α + 201×(1 – α)

10/15/14 CSC 2/456 20

Layout of A Page Table Entry
• Physical page frame address
!

• No logical page number
!

• Other bits for various page properties

10/15/14 CSC 2/456 21

Page Table Structure
• Problem with a flat linear page table

– assume a page table entry is 4 bytes; page size is 4KB;
the 32-bit address space is 4GB large

– how big is the flat linear page table?
!

• Solutions:
– Hierarchical Page Tables

• break the logical page number into multiple levels

!
• Metrics:

– Space consumption and lookup speed

10/15/14 CSC 2/456 22

Two-Level Page Table
• A logical address (on 32-bit machine with 4K page size) is divided into:

– a page offset consisting of 12 bits.
– a page number consisting of 20 bits; further divided into:

• a 10-bit level-2 page number.
• a 10-bit level-1 page number.

• Thus, a logical address looks like:
!

• Address translation scheme:

page number page offset

pi p2 d
10 10 12

level-1 page table

level-2 page table

23

Two-Level Page Table: Example

• Space consumption
• Lookup speed

• What happens to
EAT?

10/15/14 CSC 2/456 24

Deal With 64-bit Address Space
• Two-level page tables for 64-bit address space

– more levels are needed

• Inverted page tables
– One entry for each real

page of memory
– Entry consists of the

process id and virtual
address of the page
stored in that real
memory location

• Problems:
– search takes too long
– difficult to share memory

10/15/14 CSC 2/456 25

Hashed Page Tables
• The virtual page number is hashed into a page table. This page table

contains a chain of elements hashing to the same location.
• Virtual page numbers are compared in this chain searching for a match.

If a match is found, the corresponding physical frame is extracted.

10/15/14 CSC 2/456 32

Memory Access Setting in Page Table

• Parts of the logical address space may not be mapped
– Valid-invalid bit attached to each entry in the page

table
– indicating whether the associated page is in the process’

logical address space, and is thus a legal page
!

• Some pages are read-only, or can’t contain executable code

– access bits in page table to reflect these
!

• Software exception if attempting to access an invalid page, or
to perform disallowed actions

10/15/14 CSC 2/456 32

Address Space Identifiers (ASID)

• Associate a process ID (or other identifier) with a translation
• Called Address Space Identifier
• Register holds current ASID
• Translation only used if its ASID matches current ASID
• Why add this feature?

10/15/14 CSC 2/456 32

Global Bit

• Keeps translation in TLB even on TLB flush
• Special TLB flush instruction/operand flushes global pages
• Why do we have a global bit?

10/15/14 CSC 2/456 32

Other Bits

• Present bit
• Denotes whether a translation is valid
• Page fault exception when invalid page is accessed

• Read bit
• Set by hardware when a page is read

• Modified (aka Dirty) bit
• Set by hardware when a page is written

10/15/14 CSC 2/456 34

Page Size Selection
• Issues concerning page size

– fragmentation
– page table size
– TLB reach
!

• TLB Reach - the amount of memory accessible from the TLB.
– TLB Reach = (TLB Size) X (Page Size)

• Large TLB reach means fewer TLB misses
!

• Multiple page sizes:
– This allows applications that require larger page sizes the

opportunity to use them without an increase in fragmentation

32

Paging Hardware Uses

10/15/14 CSC 2/456 33

Demand Paging

• In the old days, swap a process from disk to memory as a whole unit
• Demand paging brings in code/data as needed
• Here’s how it works:

• First access to a page generates a fault
• Page fault handler finds data that needs to be paged in
• Data is loaded into page
• Memory access resumes

• Pre-paging brings in data before it is needed

10/15/14 CSC 2/456 33

Process Creation: Copy-on-Write
• Basic idea:

– fork() semantics says the child process has duplicate copy of the
parent’s address space

– child process often calls exec() right after fork()
– Copy-on-Write (COW) allows both parent and child processes to

initially share the same pages in memory
!

• Implementation:
– shared pages are marked readonly after fork()
– if either process modifies a shared page, a page fault occurs and

then the page is copied
– the other process (who later faults on write) discovers it is the only

owner; so it doesn’t copy again

10/15/14 CSC 2/456 57

Memory-Mapped Files
• Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory
!

• At page fault:
– A certain portion of the file is read from the file system into

physical memory
– Subsequent reads/writes to/from the file are like ordinary

memory accesses
– Modified pages are written back to disk
!

• Simplifies file access by treating file I/O through memory rather than
read()/write() system calls

36

Virtual Memory and the Backing Store

10/15/14 CSC 2/456 37

Backing Store
• With virtual memory, the whole address space of each

process has a copy in the backing store (i.e., disk)
– program code, data/stack
!

• Consider the whole program actually resides on the backing
store, only part of it is cached in memory
!

• With each page table entry, a valid–invalid bit is associated  
(1 ⇒ in-memory, 0 ⇒ not-in-memory or invalid logical page)

10/15/14 CSC 2/456 38

Page Table with Virtual Memory
• With each page table entry a valid–invalid bit is associated  

(1 ⇒ in-memory, 0 ⇒ not-in-memory or invalid logical page)

10/15/14 CSC 2/456 39

Page Fault

• Invalid logical page:
– ⇒ abort
!

• Just not in memory:
– Get a free frame
– Swap page into the free

frame
– Reset the page table

entry, valid bit = 1
– Restart the program from

the fault instruction.

• A reference to a page with the valid bit set to 0 will trap to OS ⇒ page
fault

• What if there is no free frame?

10/15/14 CSC 2/456 40

Page Fault Overhead

• Page fault exception handling
!

• [swap page out]
!

• swap page in
!

• restart user program
!

• memory access

10/15/14 CSC 2/456 41

Page Replacement
• Page replacement is necessary when no physical frames are

available for demand paging
– a victim page would be selected and replaced
!

• A dirty bit for each page
– indicating if a page has been changed since last time

loaded from the backing store
– indicating whether swap-out is necessary for the victim

page
– How is it maintained? Does it need to be in the page

table entry?

10/15/14 CSC 2/456 42

Page Replacement Algorithms
• Page replacement algorithm: the algorithm that picks the

victim page
!

• Metrics:
– low page-fault rate
– implementation cost/feasibility
!

• For the page-fault rate:
– Evaluate an algorithm by running it on a particular string

of memory references (reference string) and computing
the number of page faults on that string

10/15/14 CSC 2/456 43

First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages can be in memory at a time)
!
!
!
!
• 4 frames  

 
 
 
 
 

!

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

5

1

2

4

5 10 page faults

4 3

44

Wait a minute!
Adding more frames created more page

faults!

10/15/14 CSC 2/456 43

Belady’s Anomaly
– more frames do not necessarily lead to less page faults

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

5

1

2

4

5 10 page faults

4 3

10/15/14 CSC 2/456 44

Stack Algorithm

• Stack algorithm: One for which it can be shown
that the set of pages in memory for n frames is
always a subset of the set of pages that would be
in memory with n+1 frames

• Does not suffer from Belady’s Anomaly

10/15/14 CSC 2/456 45

Optimal Algorithm

• Optimal (called OPT or MIN) algorithm:
– Replace page that will not be used for longest period of time
!

• 4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

3

4

6 page faults

4 5

10/15/14 CSC 2/456 46

Least Recently Used (LRU) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5  

!
!
!
!
!
!
!

• Not always better than FIFO, but more frames always lead to less or equal
page faults

– imagine a virtual stack (infinite size) of pages
– each page is moved to the top after being accessed
– this virtual stack is independent of the number of frames
– page fault number when there are N frames:

• the number of accesses that do not hit the top N pages in the virtual stack

1

2

3

5

4

4 3

1

10/15/14 CSC 2/456 47

Implementations
• FIFO implementation
!

• Time-of-use LRU implementation:
– Every page entry has a time-of-use field; every time page is

referenced through this entry, copy the clock into the field
– When a page needs to be changed, look at the time-of-use

fields to determine which are to change
!

• Stack LRU implementation – keep a stack of page numbers in a
double link form:
– Page referenced: move it to the top
– Always replace at the bottom of the stack

10/15/14 CSC 2/456 48

Feasibility of the Implementations
• FIFO implementation
• LRU implementations:

– Time-of-use implementation
– Stack implementation
!

• What needs to be done at each memory reference?
• What needs to be done at page loading or page replacement?

10/15/14 CSC 2/456 49

LRU Approximation Algorithms
• LRU approximation with a little help from the hardware.
!

• Reference bit
– With each page associate a bit, initially = 0
– When page is referenced, the bit is set to 1 by the hardware
– Replace a page whose reference bit is 0 (if one exists). We do not

know the order, however
• Second chance

– Combining the reference bit with FIFO replacement
– If page to be replaced (in FIFO order) has reference bit = 1 then:

• set reference bit 0
• leave page in memory
• replace next page (in FIFO order), subject to same rules

– Also called CLOCK algorithm

10/15/14 CSC 2/456 50

LRU Approximation Algorithms
• Enhancing the reference bit algorithm:

– it would be nice if there is more information about the reference
history than a single bit.

– with some more help from software, e.g., a memory reference
counter (in page table entry and TLB)
!

• Maintain more reference bits in software:
– at every N-th clock interrupt, the OS moves each hardware page

reference bit (in page table entry and TLB) into a multi-bit page
reference history word (in software-maintained memory).

10/15/14 CSC 2/456 51

Counting-based Page Replacement

• Least frequently used page-replacement algorithm
– the page with smallest access count (within a period of time) is

replaced
!

• Implementation difficulties
– Requires per-reference count increment

10/15/14 CSC 2/456 52

How much memory does a process
need?

• Our discussion so far is “Given the amount of memory, what order
should we evict pages?”

• Now we look at “How much memory does a process need?”
• If a process does not have “enough” pages, the page-fault rate is

very high
– Thrashing ≡ a process is mostly busy with swapping pages

Amount of memory

pa
ge

-fa
ul

t r
at

e

Thrashing

10/15/14 CSC 2/456 53

Working-Set Model
• WSSi (working set of Process Pi) = total number of pages referenced in

the most recent Δ (working-set window)

• data access locality:
– working set does not change or changes very slowly over time.
– so enough memory for the working set should be good.
!

• How to choose Δ?

10/15/14 CSC 2/456 54

Working-Set-Based Memory Allocation
• Two components

!
• How much memory does a process need?

– try to allocate enough frames for each process’s working
set.

– if ΣWSSi > m, then suspend one of the processes.

– How to determine the working set size over a recent
period Δ?

• Given the amount of memory, what order should we evict

pages?
– LRU and augment (WSClock)

Working Set Algorithm
❖ Define working set based on process’s virtual time tau!

❖ For each page, track!

❖ Time of last use!

❖ Referenced bit!

❖ Modified bit!

❖ On page fault:!

❖ Update time of last use for referenced pages while looking for a page to evict!

❖ Evict unreferenced pages that are older than tau (prefer Referenced over Modified)!

❖ Clear Referenced bits

57

Working Set Clock (WSClock) Algorithm

❖ Put frames into a circular list!

❖ Cycle through ring of frames on page fault!

❖ Clean frames older than tau are used for replacement!

❖ Dirty frames older than tau are scheduled for write-back; marked
clean when write-back finishes!

❖ If we get back around:!

❖ Write-back scheduled: keep cycling until a clean page is found!

❖ No write-back scheduled: pick a clean page and use it

58

10/15/14 CSC 2/456 55

Pitfall of Working-Set-Based Memory
Allocation

• Pitfall:
– The working set size is not a good indicator of how much

memory a process “actually” needs.
!

• Example:
– Consider a process that accesses a large amount of data

over time but rarely reuses any of them (e.g., sequential
scan).

– It would exhibit a large working set but different
memory sizes would not significantly affect its page
fault rate.

10/15/14 CSC 2/456 56

Other Memory Management Issues

• When to swap out pages?
!

• Prepaging
– swap in pages that are expected to be accessed in the

future  

61

Kernel Memory Allocation

10/15/14 CSC 2/456 58

Kernel Memory Allocation

• Distinguishing features
– Sometimes require physically contiguous region
– Usually request memory for data structures of varying

size
– Data structures typically reused

– task_struct
– cred_t

– Need to allocate specific pages for I/O

10/15/14 CSC 2/456 58

Kernel Memory Page Allocation

• Buddy system
• Power-of-2 allocator (Linux kernel originally

used this)
• Advantage: coalescing
• Drawback: fragmentation

• Some kernel functions use it as a “regular”
memory allocator

10/15/14 CSC 2/456 58

Kernel Memory Heap Allocator

• Slab allocator
• Creates a “pool” of objects of the same size
• Improves spatial locality for cache
• Improves reuse of memory

• General allocator (kmalloc/kfree)
• Allocates “one-off” types of memory
• Backed by slab allocator (one pool for power-

of-two size)

10/15/14 CSC 2/456 59

Disclaimer

• Parts of the lecture slides contain original work of Abraham
Silberschatz, Peter B. Galvin, Greg Gagne, Andrew S.
Tanenbaum, and Gary Nutt. The slides are intended for the
sole purpose of instruction of operating systems at the
University of Rochester. All copyrighted materials belong to
their original owner(s).

