
CS 256/456: Operating Systems

Protection John Criswell!
University of Rochester

1

The Basics

2

Purpose of Protection
❖ Enforce information sharing and integrity policies!

❖ Professors can modify grades of students in class!

❖ Students can examine their grades from any class!

❖ Students cannot modify grades!

❖ Limit damage caused by errant components!

❖ Buffer overflow in server doesn’t permit grade
change

3

Access Control Matrix

❖ Subject: Entity which performs an action!

❖ Object: Entity upon which an action is performed!

❖ Access: Read, Write, Delete, Send Signal, etc…!

❖ Special Access: Own

4

Object 1 Object 2 Object 3

Subject 1 Read, Write
Subject 2 Read
Subject 3 Read, Write Read, Own
Subject 4 Own Read, Write, Own

Why not use the access control
matrix in real systems?

5

Two Problems with Access Control Matrix

❖ Too large to implement efficiently!

❖ Cannot determine if an unsafe state can occur!

❖ Reduces to the halting problem

6

Access Control Lists
❖ Each object lists!

❖ Subjects that can access the object!

❖ What access the subject has to the object

7

Subject Granted Access
John Read
Jim Read, Write

Judy Append

file

Capabilities
❖ Each subject lists!

❖ Objects that the subject can access!

❖ What access the subject has to the object

8

Object Granted Access
file1 Read
file2 Read, Write
file3 Append

Jim

Discretionary Access Control (DAC)
Owner decides which subjects can access the object

9

John

John

Jim

Mandatory Access Control (MAC)
Administrator decides which subjects can access the object

10

John John JimAdmin

Real Access Controls

11

(Unprivileged) Unix File Access Control

12

r w _ r _ _ r _ _
Owner Group Other

Permission Bit What the Bit Allows

read Can open for reading

write Can open for writing

execute Can execute or search

(Unprivileged) Unix File Access Control

❖ If Effective UID matches owner, use Owner permissions!

❖ If Effective GID matches group, use Group permissions!

❖ Otherwise, use Other permissions

13

r w _ r _ _ r _ _
Owner Group Other

File UID

File GID

(Unprivileged) Unix File Access Control

❖ Owner can modify file permissions to arbitrary value!

❖ Owner can modify file’s Group ID!

❖ On some systems, Owner can modify file’s Owner ID

14

r w _ r _ _ r _ _
Owner Group Other

File UID

File GID

setuid Execuables
❖ File permissions have a setuid bit!

❖ When executed, process UID become file owner UID!

❖ Saved UID is set to effective UID before execve()!

❖ Examples!

❖ passwd!

❖ su, sudo!

❖ ssh

15

Is Unix access control mandatory or
discretionary?

16

Bell LaPadula

❖ Attach labels to Subjects and Objects!

❖ Classification: an integer representing secrecy level!

❖ Compartments: bit array representing subsets of data!

❖ Human-readable names associated with classifications and compartments

17

Secret US UK ES

Classification Compartments

Bell LaPadula: Domination

❖ Classification2 <= Classification1!

❖ Compartments2 is a subset of Compartments1!

❖ Label1 dom Label2

18

Secret US UK ES

Classification Compartments

Label 1:

Confidential US ESLabel 2:

Bell LaPadula: Access Controls
❖ Read: LabelSubject dom LabelObject!

❖ Write: LabelObject dom LabelSubject

19

Secret

Confidential

Confidential

Secret

Read Write

What label should a newly created object have?

20

Confidential
Create

What label should a newly created object have?

20

Confidential Confidential
Create

Bell LaPadula Proof
❖ Proved that information does not flow from high to low!

❖ Shows that system cannot enter unsafe state!

❖ Assumes no privileges to bypass rules!

❖ Proof created a famous controversy!

❖ McLean questioned how security is defined!

❖ Controversy led to the creation of a conference!

❖ Computer Security Foundations (CSF)

21

Decentralized Information Flow Control

❖ In Bell-LaPadula, labels created by administrator!

❖ It would be nice to have applications create labels!

❖ Temporary session IDs!

❖ Subset of users that are logged in!

❖ Applications create labels!

❖ OS kernel propagates and enforces label policy!

❖ E.g., AsbestOS

22

Other Access Controls
❖ Biba Integrity Labels !

❖ Role-based Access Control!

❖ Domain Type Enforcement!

❖ … and many, many more

23

Privileges

24

Rules are Made to be Broken
❖ Real systems need to bypass access control!

❖ Installing new software!

❖ Change of policy!

❖ Change of ownership!

❖ Fix incorrect configurations!

❖ Help users solve problems

25

Privileges
❖ Override access controls!

❖ Usually a process attribute!

❖ Note: I think this is a bad idea!

❖ Coarse-grained: User ID 0 (root user)!

❖ Fine-grained: Bit-field of privileges

26

Coarse-Grained Privileges
❖ Unix!

❖ All or nothing: Root UID overrides all access controls

27

Medium-Grained Privileges
❖ Linux!

❖ CAP_CHOWN!

❖ CAP_DAC_OVERRIDE!

❖ CAP_DAC_READ_SEARCH!

❖ CAP_FOWNER!

❖ CAP_SETUID and CAP_SETGID

28

Fine-Grained Privileges: Argus PitBull
❖ Hierarchal tree: Top privilege is superset of sub-tree!

❖ PV_ROOT!

❖ PV_MAC!

❖ PV_MAC_READ!

❖ PV_MAC_WRITE!

❖ PV_DAC!

❖ PV_DAC_READ!

❖ PV_DAC_WRITE!

❖ Separate privileges for overriding read, write, execute!

❖ Separate privilege classes for MAC and DAC override

29

What is the value of fine-grained
privileges?

30

Privilege Bracketing
❖ Enable privileges before operation!

❖ Disable privileges after operation

31

Privileged!
Execution

Non-privileged!
Execution

vsExecution

Unix Privilege Bracketing

32

seteuid(0);

open (“/dev/hd”);

seteuid(getruid());

Real UID

Effective
UID

23

23

Saved
UID

seteuid(getruid());

0

Unix Privilege Bracketing

32

seteuid(0);

open (“/dev/hd”);

seteuid(getruid());

Real UID

Effective
UID

23

0

Saved
UID

seteuid(getruid());

0

Unix Privilege Bracketing

32

seteuid(0);

open (“/dev/hd”);

seteuid(getruid());

Real UID

Effective
UID

23

23

Saved
UID

seteuid(getruid());

0

Argus PitBull Privilege Bracketing

33

priv_raise (PV_DAC_R);

open (“/dev/hd”, O_RDONLY);

priv_lower (PV_DAC_R);

Maximum
Privilege Set

Effective
Privilege Set

PV_DAC_R,!
PV_DAC_W,!
PV_DAC_X

Argus PitBull Privilege Bracketing

33

priv_raise (PV_DAC_R);

open (“/dev/hd”, O_RDONLY);

priv_lower (PV_DAC_R);

Maximum
Privilege Set

Effective
Privilege Set

PV_DAC_R,!
PV_DAC_W,!
PV_DAC_X

PV_DAC_R

Argus PitBull Privilege Bracketing

33

priv_raise (PV_DAC_R);

open (“/dev/hd”, O_RDONLY);

priv_lower (PV_DAC_R);

Maximum
Privilege Set

Effective
Privilege Set

PV_DAC_R,!
PV_DAC_W,!
PV_DAC_X

Privilege Dropping
❖ Remove privilege permanently

when no longer needed

34

Execution

Privileged!
Execution

Non-privileged!
Execution

What is the value of privilege
bracketing?

35

Open Research Questions
❖ How to design access controls that are usable?!

❖ SELinux and PitBull too difficult to use!

❖ Requires significant system integration effort!

❖ Retrofitting access controls to existing systems!

❖ Causes very confusing (but correct) system behavior!

❖ Can tools configure access controls to enforce policies?

36

Open Research Questions
❖ How much does better privilege handling help?!

❖ How fine-grained do privileges need to be?!

❖ Answer may lie in bounded model checking!

❖ Programming patterns that reduce privilege use

37

