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Networking Overview
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Networking Layers
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Link Layer

Network Layer

Transport Layer

Application Layer Format of Application Data

Which application?

Which machine on the Internet?

Which machine on the local network?



Networking Layers
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Packets
Data divided into packets to send across network
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Packets
Data divided into packets to send across network
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Data

TCP Header

IP Header

Ethernet Header

192.0.0.10

Port 23

“LOLCats!”

MAC 00:23:56:00:10:90

HTTP Header Response-header:



Types of Network Protocols
❖ Connection or No connections!

❖ Connections: Indicate one time who you are talking to!

❖ No connections: Each message specifies recipient!

❖ Message boundaries vs. Streams!

❖ Reliable vs. Unreliable!

❖ Reliable: Will retransmit lost data transparently!

❖ Unreliable: Sent data can be lost
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Two APIs to Rule Them All
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System V STREAMS
❖ Used in most commercial Unix variants (e.g., Solaris)!

❖ More or less discontinued!

❖ Implementation has same principles of sockets
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Berkeley Sockets
❖ The standard interface for network applications!

❖ Linux, FreeBSD, Mac OS X, AIX!

❖ Emulated in Solaris and other System V Unices
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Berkeley Sockets Implementation
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Socket: A Pipe for the Network

❖ Full-duplex: data moves each direction!

❖ Created by socket() system call!

❖ Kernel performs all protocol processing
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“The Network”Local!
End

Remote!
End



Socket
❖ Socket is a file descriptor!

❖ Can (usually) be used like a file
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fd
fd
fd
fd

file entry

file entry file

socket

Process File Descriptor Table



Down (and Up) the Rabbit Hole
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mbuf

TCP Layer

Socket Layer

IP Layer

Ethernet Layer

Socket

Send Queue Receive Queue

mbuf



The name of the game is to avoid 
copying data
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The Almighty Message Buffer (mbuf)
❖ Represents a network packet!

❖ Mbuf Header!

❖ Pointer to start of data!

❖ Length of data!

❖ Pointer to next mbuf in chain!

❖ Pointer to next mbuf in 
queue
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Mbuf

Mbuf Header

Packet Header

Data!
(100 bytes)



The Almighty Message Buffer (mbuf)
❖ Represents a network packet!

❖ Packet Header Struct!

❖ Not IP Header!

❖ Only marks start of chain!

❖ Data (payload) area
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Mbuf

Mbuf Header

Packet Header

Data!
(100 bytes)



mbuf Chains
❖ mbufs can be chained together; chain represents one network packet!

❖ First mbuf has packet header: marks beginning of chain
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Mbuf Header

Packet Header

Data!
(100 bytes)

Mbuf Header

Data!
(108 bytes)

Mbuf Header

Data!
(108 bytes)



Cluster mbuf (mbuf on Steroids)
❖ Field in header points to externally allocated buffer!

❖ Allows for mbuf with large data
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Mbuf Header

Packet Header

Unused

Data!
(2048 bytes)!

(Not to Scale)



If you can chain mbufs, of what 
benefit is a cluster mbuf?
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The Benefits of Clusters
❖ mbuf clusters can hold large amount of contiguous data!

❖ More efficient for large packets!

❖ More efficient for copying data between user and kernel space!

❖ Clusters can be shared between mbufs

20

Mbuf 
Packet 
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Data!
(2048 
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Down (and Up) the Rabbit Hole
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Socket Layer

IP Layer

Ethernet Layer

Socket
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Sending Data
❖ Put data into mbuf!

❖ Each layer prepends headers!

❖ Only adjusts data in mbuf 
header!
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Mbuf

Mbuf Header

Packet Header

Data Area
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Sending Data
❖ Put data into mbuf!
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Mbuf

Mbuf Header

Packet Header

Data Area

Data

TCP Header
IP Header



Receiving Data
❖ Remove headers from mbuf!

❖ Only adjusts data in mbuf 
header!
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Receiving Data
❖ Remove headers from mbuf!
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header!
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Receiving Data
❖ Remove headers from mbuf!

❖ Only adjusts data in mbuf 
header!
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Berkeley Socket API
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Creating Sockets

❖ Socket is a file descriptor!

❖ Created by socket system call!

❖ Full-duplex!

❖ Domain determines protocol family (e.g, IP, AppleTalk)!

❖ Type indicates whether messages have boundaries!

❖ Protocol specifies a specific protocol within the family (TCP, UDP, 
ICMP, IGMP)
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int socket (int domain, int type, int protocol);



Setting the Endpoints

❖ bind(): Sets the address of the socket’s local side!

❖ connect(): Sets the address of the socket’s remote side!

❖ For TCP, sends 3-way handshake
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“The (Social?) Network”Bind!
(local)

Connect!
(remote)



Establishing Connections
❖ Needed for connection-oriented protocols (e.g., TCP)!

❖ connect(): Starts client 3-way handshake!

❖ accept(): Accepts new connection for server!

❖ Returns new socket for that specific client!

❖ Must be done for sending/receiving data
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accept() in Pictures
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Server
Listening Socket

???



accept() in Pictures

28

Server
Listening Socket

Client Socket
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Berkeley Sockets: I/O
❖ Sockets are file descriptors!

❖ Can use read() and write()!

❖ Can use other system calls like dup(), close()!

❖ Can use sendto() and recvfrom()!

❖ Specify to where data should go!

❖ Determine from whence data comes!

❖ Specify special options (non-blocking, out of band)
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Typical TCP Client and Server
❖ Client!

❖ fd = socket (…)!

❖ connect (fd, …);!

❖ Server!

❖ fd = socket (…);!

❖ bind (fd, …);!

❖ fd2 = accept (fd, …);
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Server Architecture
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Types of Servers
❖ telnetd!

❖ ftpd!

❖ dhcpd!

❖ bootpd!

❖ time!

❖ echo!

❖ daytime!

❖ quotd!

❖ chargen!

!

❖ sshd!

❖ httpd!

❖ imapd!

❖ popd!

❖ sendmail (SMTP)!

❖ nfsd!

❖ bind (DNS)!

❖ ircd!

❖ ldapd
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Fork on Accept
❖ Single process waits for a connection via accept()!

❖ Create new process (thread) when a connection arrives
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Socket
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❖ Create new process (thread) when a connection arrives
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Socket
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What happens if these servers are 
all separate programs?
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Internet Super Server (inetd)
❖ Use single process to wait for connections!

❖ Hands socket off as stdin/stdout of programs!

❖ Some requests handled by inetd directly
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What happens if you get a lot of connections 
(e.g., Google, the CSC 256/456 web site)?
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Pre-forked/Pre-threaded
❖ Create multiple processes!

❖ All processes wait on a single socket
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Socket



What is the disadvantage of 
pre-forked/pre-threaded servers?
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Security
❖ Pre-forked servers reuse processes!

❖ Stale data!

❖ Memory leaks!

❖ Processes often replaced after awhile
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Network Summary
❖ Networks are like onions (and ogres!): they have layers!!

❖ Kernel must add/remove headers!

❖ Each layer solves a different problem!

❖ Network data structures designed to minimize copies!

❖ mbuf designed specifically to achieve this!

❖ Servers designed for performance and security

40


