
CS 256/456: Operating Systems

Network 
Implementation

John Criswell!
University of Rochester

1



Networking Overview

2



Networking Layers

3

Link Layer

Network Layer

Transport Layer

Application Layer Format of Application Data

Which application?

Which machine on the Internet?

Which machine on the local network?



Networking Layers

4

Link Layer

Network Layer

Transport Layer

Application Layer

Ethernet

IPv4

TCP

HTTP



Packets
Data divided into packets to send across network

5

Data “LOLCats!”



Packets
Data divided into packets to send across network

5

Data “LOLCats!”

HTTP Header Response-header:



Packets
Data divided into packets to send across network

5

Data

TCP Header Port 23

“LOLCats!”

HTTP Header Response-header:



Packets
Data divided into packets to send across network

5

Data

TCP Header

IP Header 192.0.0.10

Port 23

“LOLCats!”

HTTP Header Response-header:



Packets
Data divided into packets to send across network

5

Data

TCP Header

IP Header

Ethernet Header

192.0.0.10

Port 23

“LOLCats!”

MAC 00:23:56:00:10:90

HTTP Header Response-header:



Types of Network Protocols
❖ Connection or No connections!

❖ Connections: Indicate one time who you are talking to!

❖ No connections: Each message specifies recipient!

❖ Message boundaries vs. Streams!

❖ Reliable vs. Unreliable!

❖ Reliable: Will retransmit lost data transparently!

❖ Unreliable: Sent data can be lost

6



Two APIs to Rule Them All

7



System V STREAMS
❖ Used in most commercial Unix variants (e.g., Solaris)!

❖ More or less discontinued!

❖ Implementation has same principles of sockets

8



Berkeley Sockets
❖ The standard interface for network applications!

❖ Linux, FreeBSD, Mac OS X, AIX!

❖ Emulated in Solaris and other System V Unices

9



Berkeley Sockets Implementation

10



Socket: A Pipe for the Network

❖ Full-duplex: data moves each direction!

❖ Created by socket() system call!

❖ Kernel performs all protocol processing

11

“The Network”Local!
End

Remote!
End



Socket
❖ Socket is a file descriptor!

❖ Can (usually) be used like a file

12

fd
fd
fd
fd

file entry

file entry file

socket

Process File Descriptor Table



Down (and Up) the Rabbit Hole

13

mbuf

TCP Layer

Socket Layer

IP Layer

Ethernet Layer

Socket

Send Queue Receive Queue

mbuf



The name of the game is to avoid 
copying data

14



The Almighty Message Buffer (mbuf)
❖ Represents a network packet!

❖ Mbuf Header!

❖ Pointer to start of data!

❖ Length of data!

❖ Pointer to next mbuf in chain!

❖ Pointer to next mbuf in 
queue

15

Mbuf

Mbuf Header

Packet Header

Data!
(100 bytes)



The Almighty Message Buffer (mbuf)
❖ Represents a network packet!

❖ Packet Header Struct!

❖ Not IP Header!

❖ Only marks start of chain!

❖ Data (payload) area

16

Mbuf

Mbuf Header

Packet Header

Data!
(100 bytes)



mbuf Chains
❖ mbufs can be chained together; chain represents one network packet!

❖ First mbuf has packet header: marks beginning of chain

17

Mbuf Header

Packet Header

Data!
(100 bytes)

Mbuf Header

Data!
(108 bytes)

Mbuf Header

Data!
(108 bytes)



Cluster mbuf (mbuf on Steroids)
❖ Field in header points to externally allocated buffer!

❖ Allows for mbuf with large data

18

Mbuf Header

Packet Header

Unused

Data!
(2048 bytes)!

(Not to Scale)



If you can chain mbufs, of what 
benefit is a cluster mbuf?

19



The Benefits of Clusters
❖ mbuf clusters can hold large amount of contiguous data!

❖ More efficient for large packets!

❖ More efficient for copying data between user and kernel space!

❖ Clusters can be shared between mbufs

20

Mbuf 
Packet 

Unused

Data!
(2048 
bytes)

Mbuf 
Packet 

Unused



Down (and Up) the Rabbit Hole

21

mbuf

TCP Layer

Socket Layer

IP Layer

Ethernet Layer

Socket

Send Queue Receive Queue

mbuf



Sending Data
❖ Put data into mbuf!

❖ Each layer prepends headers!

❖ Only adjusts data in mbuf 
header!

22

Mbuf

Mbuf Header

Packet Header

Data Area



Sending Data
❖ Put data into mbuf!

❖ Each layer prepends headers!

❖ Only adjusts data in mbuf 
header!

22

Mbuf

Mbuf Header

Packet Header

Data Area

Data



Sending Data
❖ Put data into mbuf!

❖ Each layer prepends headers!

❖ Only adjusts data in mbuf 
header!

22

Mbuf

Mbuf Header

Packet Header

Data Area

Data

TCP Header



Sending Data
❖ Put data into mbuf!

❖ Each layer prepends headers!

❖ Only adjusts data in mbuf 
header!

22

Mbuf

Mbuf Header

Packet Header

Data Area

Data

TCP Header
IP Header



Receiving Data
❖ Remove headers from mbuf!

❖ Only adjusts data in mbuf 
header!

23

Mbuf

Mbuf Header

Packet Header

Data Area

Data

TCP Header
IP Header



Receiving Data
❖ Remove headers from mbuf!

❖ Only adjusts data in mbuf 
header!

23

Mbuf

Mbuf Header

Packet Header

Data Area

Data

TCP Header



Receiving Data
❖ Remove headers from mbuf!

❖ Only adjusts data in mbuf 
header!

23

Mbuf

Mbuf Header

Packet Header

Data Area

Data



Berkeley Socket API

24



Creating Sockets

❖ Socket is a file descriptor!

❖ Created by socket system call!

❖ Full-duplex!

❖ Domain determines protocol family (e.g, IP, AppleTalk)!

❖ Type indicates whether messages have boundaries!

❖ Protocol specifies a specific protocol within the family (TCP, UDP, 
ICMP, IGMP)

25

int socket (int domain, int type, int protocol);



Setting the Endpoints

❖ bind(): Sets the address of the socket’s local side!

❖ connect(): Sets the address of the socket’s remote side!

❖ For TCP, sends 3-way handshake

26

“The (Social?) Network”Bind!
(local)

Connect!
(remote)



Establishing Connections
❖ Needed for connection-oriented protocols (e.g., TCP)!

❖ connect(): Starts client 3-way handshake!

❖ accept(): Accepts new connection for server!

❖ Returns new socket for that specific client!

❖ Must be done for sending/receiving data

27



accept() in Pictures

28

Server
Listening Socket

???



accept() in Pictures

28

Server
Listening Socket

Client Socket

???

A



Berkeley Sockets: I/O
❖ Sockets are file descriptors!

❖ Can use read() and write()!

❖ Can use other system calls like dup(), close()!

❖ Can use sendto() and recvfrom()!

❖ Specify to where data should go!

❖ Determine from whence data comes!

❖ Specify special options (non-blocking, out of band)

29



Typical TCP Client and Server
❖ Client!

❖ fd = socket (…)!

❖ connect (fd, …);!

❖ Server!

❖ fd = socket (…);!

❖ bind (fd, …);!

❖ fd2 = accept (fd, …);

30



Server Architecture

31



Types of Servers
❖ telnetd!

❖ ftpd!

❖ dhcpd!

❖ bootpd!

❖ time!

❖ echo!

❖ daytime!

❖ quotd!

❖ chargen!

!

❖ sshd!

❖ httpd!

❖ imapd!

❖ popd!

❖ sendmail (SMTP)!

❖ nfsd!

❖ bind (DNS)!

❖ ircd!

❖ ldapd

32



Fork on Accept
❖ Single process waits for a connection via accept()!

❖ Create new process (thread) when a connection arrives

33

Socket



Fork on Accept
❖ Single process waits for a connection via accept()!

❖ Create new process (thread) when a connection arrives

33

Socket

Socket



What happens if these servers are 
all separate programs?

34



Internet Super Server (inetd)
❖ Use single process to wait for connections!

❖ Hands socket off as stdin/stdout of programs!

❖ Some requests handled by inetd directly

35

inetd

Socket

Socket

Socket

Socket



Internet Super Server (inetd)
❖ Use single process to wait for connections!

❖ Hands socket off as stdin/stdout of programs!

❖ Some requests handled by inetd directly

35

inetd

Socket
telnetd

Socket

Socket

Socket

Socket



Internet Super Server (inetd)
❖ Use single process to wait for connections!

❖ Hands socket off as stdin/stdout of programs!

❖ Some requests handled by inetd directly

35

inetd

Socket
telnetd

Socket

Socket

Socket

Socket ftpd
Socket



What happens if you get a lot of connections 
(e.g., Google, the CSC 256/456 web site)?

36



Pre-forked/Pre-threaded
❖ Create multiple processes!

❖ All processes wait on a single socket

37

Socket



What is the disadvantage of 
pre-forked/pre-threaded servers?

38



Security
❖ Pre-forked servers reuse processes!

❖ Stale data!

❖ Memory leaks!

❖ Processes often replaced after awhile

39



Network Summary
❖ Networks are like onions (and ogres!): they have layers!!

❖ Kernel must add/remove headers!

❖ Each layer solves a different problem!

❖ Network data structures designed to minimize copies!

❖ mbuf designed specifically to achieve this!

❖ Servers designed for performance and security

40


