CSC 256/456: Operating Systems

Microkernels

John Criswell University of Rochester

Onwards to user-space!

Microkernels

Monolithic Kernel (aka Everything and the Kitchen Sink)

Monolithic Kernel Limitations

- * Poor security
 - * Buffer overflow gains access to *everything!*
- * Poor reliability
 - * Bug in kernel can affect unrelated subsystems
 - Difficult to restart faulty subsystem

Processes Don't Have This Problem

- * Isolated memory
- Communication via
 - * Pipes
 - Explicitly shared memory
- Self-contained programs
 - No access to irrelevant data structures

Could kernel components be processes?

Microkernel

- * Move kernel functionality into user-space processes
 - * File systems
 - Networking subsystem
 - * Drivers
- * Kernel provides
 - Protection
 - Communication mechanisms

Microkernel

Advantages of Microkernels

- * Faults are localized
 - * Bug in network code doesn't corrupt disk data
- * Easier to improve reliability
 - * Can monitor and restart processes (e.g., filesystem)
- * Easier to apply security techniques
 - * Randomization and re-randomization (Guiffruida)
 - Apply memory safety or type-safe language to critical processes

Disadvantages of Microkernels

- Communication overhead
 - * Semantics of message passing affects performance
 - * What is placed in user-space affects performance
- User/Kernel boundary crossing overhead
- Context switching overhead
 - * Monolithic libraries are always available
 - * User-space service may not have CPU when needed
 - * TLB Flush when switching page table pages

Microkernel Advantages are Not Magic

- Reliability must be designed and built
 - * File system process crash still catastrophic
 - Restart of critical processes must be designed and built
- * Security is still an issue
 - * Exploited file system process can access any file
 - * Exploited network process can read all packets

Mach

- * Developed at Carnegie Mellon University in the 80's
- Memory management design influenced modern OS design
- * Goal: separate policy from mechanism

Example: Mach

- User-level memory management
 - * trusted / protected by the kernel
 - kernel provides the basic protection mechanism
 - * user-level memory manager handles page loading; decides replacement policy

Microkernel Failures

- Windows NT family
 - Original Windows NT had microkernel design
 - * By Windows 2000, functionality moved into kernel
- * Mac OS X
 - * Based on NextStep which is based on Mach + 4.4BSD
 - * BSD sub-systems moved into kernel; live alongside Mach
 - * Essentially two kernels living in the same space

Microkernel Successes

- * QNX (real-time operating system kernel)
- Symbian (mobile operating system)
- * L4
 - Major work to reduce microkernel overheads
 - * Can run Linux with L4Linux
 - seL4: Fully verified variant

Hypervisors and Virtual Machines

Virtual Machines

- * Run multiple OS instances
- * Migrate OS instances from one machine to another
- * Software compatibility when hardware changes

Windows	Mac OS X	Linux		
???				
Hardware				

Compiler Translation

- * Translate binary code (Original VMWare)
- * Translate virtual code (JVM, OS/360)

Windows	Mac OS X	Linux		
Original VMWare				
Hardware				

Para-Virtualizaiton

- * Modify OS to interface with lower-level hypervisor
- * Efficient but requires OS changes

Windows	Mac OS X	Linux	
Original Xen			
	Hardware		

Hardware Virtualization

- * Hardware provide new privilege layer under OS
- * Efficient
- * Compatible
- Requires new hardware

Windows	Mac OS X	Linux
	Xen, Hyper-V	
	Hardware	

Credits

- * Some slides based on slides from previous year
- Slides only to be used for instruction at the University of Rochester