This talk will present a novel resistive TCAM cell and array architecture that have the potential to scale TCAM capacity from megabytes to gigabytes. High-density resistive TCAM chips are organized into a DDR3-compatible DIMM, and are accessed through a software library with zero modifications to the processor or the motherboard. On applications that do not benefit from associative search, the TCAM DIMM is configured to provide ordinary RAM functionality. By tightly integrating TCAM with conventional virtual memory, and by allowing a large fraction of the physical address space to be made content-addressable on demand, the proposed memory system improves average performance by 4× and average energy consumption by 10× on a set of evaluated data-intensive applications.