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ABSTRACT
Autonomous systems cannot yet reliably engage in an open-
ended dialogue with users due the complexity of natural lan-
guage processing, but online crowds present new opportu-
nities to do so. We introduce Chorus, a system enabling
real-time two-way natural language conversation between an
end user and a single virtual agent powered by a distributed
crowd of online humans. Chorus maintains consistent, on-
topic conversations with end users across multiple sessions
even as individual members of the crowd come and go by
storing a shared, curated dialogue history. While users see
only a steady stream of dialogue with a single conversa-
tional partner, multiple crowd workers collaborate to select
responses via an interface that allows them to rapidly scan
conversational history, identify relevant parts of a conversa-
tion, and select between responses. Experiments show that
dialogue with Chorus demonstrates conversational memory
and interaction consistency, answering over 84% of all user
queries correctly. More generally, Chorus demonstrates the
ability of crowd-powered communication interfaces to serve
as a robust alternative to virtual agents when interacting with
software systems.

Author Keywords
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man computation, crowd computing
ACM Classification Keywords
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INTRODUCTION
Using natural language dialogue to interact with automated
software has been a goal of both artificial intelligence and

human-computer interaction since the early days of com-
puting. However, the complexity of human language has
made robustly handling two-way conversation with software
agents a consistent challenge [1]. Existing dialogue-based
software systems generally rely on a fixed input vocabulary
or restricted phrasings, have a limited memory of past in-
teractions, and use a fixed output vocabulary. Real-world
conversations between human partners can contain context-
dependent terms or phrasing, rely on conversational mem-
ory, require commonsense knowledge about the world, events,
or facts, retain memory stretching back over a long history of
interactions and shared experiences, and infer meaning from
incomplete and partial statements. Even the most advanced
virtual agents have difficulty handling all of these scenarios.

While individual humans have no difficulty in maintaining
natural-language conversation, it is often infeasible, unscal-
able, or expensive to hire individual humans or expert agents
to act as conversational partners for long periods of time or
large numbers of conversational partners. In recent years,
crowd computing has become a popular method to scalably
solve problems that are beyond the capabilities of autonomous
software by subcontracting them to groups of paid humans
over the web. In this model, the crowd refers to a transient
pool of online, semi-anonymous workers recruited for short
periods of time from online microtask marketplaces such
as Amazon’s Mechanical Turk. Crowd computing models
can provide software with many of the abilities of individ-
ual humans while maintaining much of the scalability of au-
tonomous software, but also presenting a new range of chal-
lenges in reliability, incentivization, and accuracy.

Many recent crowd computing applications have used the
crowd to interpret natural language instructions provided by
the user, in applications such as image description [6], speech
recognition [12], interface control [13], document editing
[4], and even vacation planning [22, 11]. Such systems re-
quire only a single round of communication however, from
the requester to the worker and back. The reason is that
maintaining consistent communication with the crowd is in-
herently difficult because the pool of online agents is always
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Figure 1. The chat interface for workers encourages them to both pro-
pose responses and agree with those of others. It also enables mem-
bers of the crowd to curate the crowd’s shared chat history (working
memory). The “requester” view is similar but removes the “Work-
ing Memory” section and only displays suggested crowd messages once
they have sufficient votes.

changing and no individual worker can be relied upon to be
available at a given time to respond to a query or to con-
tinue a dialogue for more than a few moments. Individual
workers may fail to respond to queries intelligibly for var-
ious reasons including misunderstanding of task directives,
laziness, or outright maliciousness. Furthermore, individual
workers may experience delays that are beyond their control,
such as network bandwidth variability, that make conversa-
tion inefficient. As a result, the crowd has historically been
used only as a tool to interpret human instructions, rather
than the foundation of a dialogue-based system.

In this paper we present Chorus, an online collaborative in-
terface that allows a crowd to workers to engage in a two-
way natural language conversation with users as if they were
a single, reliable individual (Figure 1). Using Chorus, work-
ers are able to produce, agree upon and submit responses to
user statements and queries quickly and easily using a com-
bination of human and machine filtering. Chorus uses three
components to simulate realistic conversations. First, a col-
laborative reasoning system lets workers select reasonable
responses from a range of crowd-produced suggestions, fil-
tering out responses from individual workers that do not fit
the flow of the conversation and presenting users with a con-
sistent conversational flow. Second, a curated memory sys-
tem lets workers highlight salient parts of a conversation
as they emerge and presents it in a highly visible region of
the interface. This provides a rapidly-accessible short-term
memory of facts and statements that are sorted by impor-
tance, and supplements a long-term memory of interactions
that remains over time. Finally, a dynamic scoring system
rewards workers for collaborative interactions that support
the goal of consistent conversation, such as making useful
statements or highlighting facts that are used later. These
features enable the crowd to learn and remember informa-
tion collectively while filtering out low quality workers.

In trials with the crowd, we found that Chorus was able to
maintain qualitatively consistent and natural conversations
between a single user and large numbers of crowd partici-
pants, remaining on-focus with single topics much as an in-
dividual user would even as individual themes and points
of discussion changed. Moreover, we found that Chorus was
capable of retaining meaningful long-term conversational mem-
ory across multiple sessions, even as individual users changed.
Lastly, we showed that Chorus could be used to enable ex-
isting interfaces with dialogue capabilities.

RELATED WORK
Chorus builds on prior work in both real-time and offline hu-
man computation. Human computation [18] has been shown
to be useful in many areas, including writing and editing
[4], image description and interpretation [6, 19], and pro-
tein folding [8]. Chorus aims to enable a conversation with
a crowd of workers in order to leverage human computation
in a variety of new ways. Existing abstractions obtain qual-
ity work by introducing redundancy and layering into tasks
so that multiple workers contribute and verify results at each
stage [16, 10]. For instance, the ESP Game uses answer
agreement [19] and Soylent uses the multiple-step find-fix-
verify pattern [4]. Since these approaches take time, they are
not always suitable for interactive real-time applications.

Crowdsourcing Web Search and Question Answering
Prior work has looked at providing specific answers to a
wide range of uncommon questions searched for on the web
by having workers extract answers from automatically gen-
erated candidate webpages [5].

Most Internet forums rely on the idea of using groups of
workers to answer to queries. Contributors are expected to
read through the thread history and gain context before sub-
mitting responses. Those submitting the original question
can also respond to the answers provided, and give feed-
back concerning issues the group has with the query. This
is similar to what Chorus aims to elicit from web workers.
The difference is that forums and similar system typically
generate answers offline, often taking hours or even days
to arrive at a final answer. In order for Chorus to enable
conversational interfaces, it needs to be able to provide real-
time interactive responses. Other systems such as ChaCha 1

try to get answers back to users in nearly-realtime, but pro-
vide answers from individual workers, without considering
the history of the user. Another difference from typical fo-
rums is that participants in Chorus collectively participate in
dialogue as though they were a single individual, instead of
responding independently.

Real-Time Human Computation
Researchers have only recently begun to investigate real-
time human computation. VizWiz [6], was one of the first
systems to elicit nearly-realtime response from the crowd. It
introduced a queuing model to help ensure that workers were
available both quickly and on-demand. For Chorus to be
available on-demand requires multiple users to be available
1www.chacha.com/
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at the same time in order to collectively contribute. Prior sys-
tems have shown that multiple workers can be recruited for
collaboration by having workers wait until a sufficient num-
ber of workers have arrived [19, 7]. Adrenaline combines the
concepts of queuing and waiting to recruit crowds (groups)
in less than 2 seconds from existing sources of crowd work-
ers [2]. Further work has used queuing theory to show that
this latency can be reduced to under a second and has also es-
tablished reliability bounds on using the crowd in this man-
ner [3]. Work on real-time captioning by non-experts[12]
uses the input of multiple workers, but differs because it en-
gages workers for longer continuous tasks. These systems
introduce a variety of methods for rapidly recruiting crowds
for a task that we use in Chorus, but focus only on one-way
interaction with the crowd rather than extended engagement.

Legion enables real-time control of existing user interfaces
by allowing the crowd to collectively act as a single oper-
ator [13]. Each crowd worker submits input independently
of other workers, then the system uses an input mediator to
combine the input into a single control stream. Our work al-
lows systems such as Legion to be more easily and naturally
controlled by users by adding a conversational layer on top.
Importantly, Chorus does not need to change the underlying
system itself, making development of crowd systems with
natural language interfaces more modular.

Organizational Learning
The idea of crowd memory and learning in continuous real-
time and collective answer tasks is related to the organi-
zational learning theory (summarized in [15]). Organiza-
tional learning has previously been demonstrated in continu-
ous real-time crowdsourcing using Legion [14]. There learn-
ing was shown in implicit cases where new workers learned
from experienced workers by observing the collective ac-
tions of the group. This means that activities in which infor-
mation is ideally only provided once, such as conversation,
cannot be accounted for using their model. Here, we instead
aim to make the crowd’s memory more explicit by having
workers curate a knowledge base to be used by future work-
ers in much the same way historians do on a societal scale
by aggregating documents and other accounts of past events.

Measuring Human-Crowd Conversation
Several approaches have been proposed for measuring the
effectiveness of conversational agents. One approach is to
use reference answers, then compare agent-provided responses
to these [9]. This approach falls short when rating dialogues
that may not follow the fixed expected path, even when the
response itself is valid. PARADISE [20] attempts to create
a structured framework for evaluating spoken dialogue that
is separate of the specific task being performed. However,
because PARADISE tries to minimize completion time, it is
generally biased in favor of shorter conversations, not just
ones that accomplish a task more effectively. Another ap-
proach is to elicit subjective feedback from users of the sys-
tem itself to get a more comprehensive notion of whether or
not the system is helpful. Webb et al [21] explore measur-
ing conversations for appropriateness, rather than via a fixed
‘performance’ metric.

In this paper, we evaluate the crowd’s ability to hold a con-
versation using a combination of measuring appropriateness
and obtaining user evaluations of the interaction. Since our
metric must account for variations in Chorus that are not
seen in automated systems, such as varying time to find the
same answers, this gives us a more complete metric of the
conversation without being biased towards speed alone. It
also allows conversations to take one of many appropriate
paths, which is important given the multitude of workers and
opinions that Chorus will incorporate.

CHORUS
To demonstrate the utility of crowd-powered conversational
interfaces, we consider the following scenario. Susan is a
mother of 3 who uses Chorus as a personal assistant and
semi-autonomous search tool while driving home from work
and picking up her kids. When Susan is driving, she is situ-
ationally disabled, as she is unable to use her hands or divert
her focus from the road. We will see how Chorus can lis-
ten to Susan’s requests and interact with an interface on her
behalf, much like a personal assistant.

When Susan first opens Chorus at the start of a drive, the sys-
tem begins recruiting crowd workers from the web. Within a
few seconds, the system is ready to begin responding. Since
Susan is driving, she opts to use the voice input mode. She
is on her way from a meeting to her office in downtown
Chicago, IL to pick up her belongings, then needs to quickly
head over to pick up her kids from soccer practice. Since
Susan does not usually head out from the office at this hour,
she asks Chorus to find the best route to take from downtown
to Lemont, IL at 3:30 P.M.

Individual workers in the crowd can listen to Susan’s request,
interpret the instruction and then develop an individual re-
sponse. However, getting a single, unified response back
from the crowd as a whole requires achieving agreement on
what needs to be done and said. To support this, Chorus
presents each worker with the responses from other workers,
letting them see what has been proposed, then asks them to
select the responses that they agree with. Using workers for
both response generation and selection improves accuracy
since people are generally able to to identify correct answers
better than they are able to generate them [17].

When a proposed answer has sufficient crowd agreement it
is “locked in”, presenting it to the user via speech or text (Su-
san). Chorus requires a majority of workers to agree with a
message in order to lock it in, but this can be tuned to bet-
ter suit different tasks’ needs. The end result is that users
are not overwhelmed by a flood of repetitive and possibly
competing feedback. Chorus can use both crowd voting and
automatic agreement found by measuring the similarity be-
tween multiple submitted answers. Automatically finding
agreement allows the system to forward answer with high
agreement to the user without needing to wait for the crowd
to vote. The Chorus worker interface is shown in Figure 1.

The user sees only a chat window with the “crowd” respon-
dent. We also present both users and workers with a “typing”
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Figure 2. The Chorus system. Users first make a request, which is
forwarded to the crowd. Workers can both submit responses and vote
for those proposed by others. Responses are hidden from users until
sufficient agreement between workers is achieved. Workers can also
add information to the crowd’s working memory by either voting on
existing lines from the conversation, or adding summaries of key facts.

status indicator that tell the other party that a response is be-
ing composed. To determine when the crowd response is
being composed, Chorus checks if there were currently any
active proposals that have not yet been forwarded to the user.
Figure 2 shows a diagram of the Chorus system.

Once Susan has asked for directions, one worker quickly re-
turns “take I-55”, but others have looked up traffic guides on-
line and know that I-55 is often backed up with heavy traffic
at that time of day. Workers propose a variety of alternatives
at first, then one proposes asking if Susan is open to taking
side roads. Other workers agree, and the questions is for-
warded to Susan, who replies that she would prefer to stay
on main thoroughfares. Using this information, some work-
ers propose taking Archer St. instead. Finally, while verify-
ing this route, one worker sees a traffic report saying there is
a major accident on Archer St. that will not be cleared for at
least an hour, so they propose “take I-90 to W. Chicago Ave
to avoid traffic on I-55 and an accident on Archer St.” Other
workers quickly check this option and see it is the best one.
Within moments they switch their vote and the I-90 option is
forwarded to Susan and spoken out loud by the application.
Requiring agreement from the crowd prevents several com-
peting answers from being forwarded to Susan, which might
have otherwise caused a distraction.

Finding Consensus
Asking workers to agree on answers before forwarding them
to the user reduces the chance of erroneous answers, but it is
difficult to automatically identify agreement. To avoid this
problem, we let workers directly vote on the answer they
agree with, or propose a new one if needed. However, using
a voting system to find consensus requires reward schemes
designed to elicit accurate answers quickly rather than re-
warding sheer bulk of answers.

To encourage workers to submit only accurate responses,
Chorus uses a multi-tiered reward scheme that pays work-
ers a small amount for each interaction with the interface,
a medium reward for agreeing with an answer that subse-
quently gets enough votes from others to forward to the user,
and a large reward for proposing an answer that the crowd
eventually chooses. The difference between these reward
values for each of these cases can be used to adjust workers’

willingness to select one option over another. Our experi-
ments used 20, 1000, and 3000 points for each value respec-
tively, where 1500 points correlates to 1 cent. These num-
bers can be tuned by developers to best suit their application.

To prevent these rewards from being abused by workers,
we also adjust the points over sequential inputs by reduc-
ing the value of each subsequent contribution by two thirds.
Reward values are reset with each user input. This means
that the points given to workers for each contribution to the
same response exponentially decreases, removing the incen-
tive for workers to provide excess input. Since Chorus’s goal
is a consistent dialogue, reducing the number of responses a
worker can submit to answer a single user input does not
limit the system’s functionality.

Conversational Memory
Memory is an important aspect to any conversation because
it allows participants to have a shared context, and history
of events and topics covered. This reduces the total amount
of information that must be conveyed by largely eliminat-
ing the need for information to be repeated, and allows more
information to be transferred with each utterance as the con-
versation progresses.

Context is typically gained over the course of one or more
conversations. However, since the crowd is dynamic, we
must account for workers who join conversations already in-
progress and may not have been around for previous con-
versations. The chat history logs contain this contextual in-
formation, but having each worker read through the entire
conversational history with a particular user eventually be-
comes prohibitively time consuming and difficult. Instead,
we need a means of directing users to the most important
aspects of a conversation without making them parse large
amounts of data.

In our example, Susan has picked up her kids from soccer
and now wants to find a place to pickup food nearby. The
crowd is able to see that the recent query for directions took
her to Lemont. The crowd quickly confirms this is her cur-
rent location and begins to search for options. Furthermore,
because Susan has used Chorus to find a place to eat before,
the crowd is able to see that one of her sons is allergic to
seafood, and Susan herself is on a diet. The crowd responds
with the name of a take-and-bake pizza place near by that
also serves popular salads, has been a favorite of Susan’s in
the past, and has not been recommended recently. Happy
with the decision, Susan confirms the address of the restau-
rant and proceeds in that direction. By using workers’ under-
standing of the information stored in the shared memory, the
crowd was able to return useful information, even though the
query itself underspecified the problem by not mentioning a
location, the son’s food allergies, or the family’s preferences.
This semi-autonomous behavior goes beyond the underlying
system being controlled (the search engine) and shows how
Chorus can act as an intelligent agent that is able to mediate
interactions with the system’s interface.
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In order to perform multi-session memory curation in the
crowd, we ask workers to highlight portions of the conversa-
tion that contain important information in order to increase
the saliency of these facts for future workers reading through
the chat history by highlighting them and making them vis-
ible in a separate ‘memory’ window. Workers can also con-
tribute summarized facts to this window by entering them in
separately. Workers can increase or decrease the importance
of each line in the crowd’s memory by voting. The lines are
then sorted in descending order importance.

To prevent new additions from being excluded from the mem-
ory window based on total votes, a separate portion of the
window is used to show the newest entries proposed by work-
ers. To promote temporal relevance, the ranking of a given
fact will also decay automatically over time if no workers
have voted for it recently. Contributions to the collective
memory are also rewarded using the multi-tiered point sys-
tem described above. Allowing this curation process to take
place during the course of the conversation reduces the per-
worker overhead involved in maintaining a shared history.

Paying Workers for Continuous Tasks
In order to pay workers who may remain active in the task
for different lengths of time fairly, we base payments on the
number and accuracy of their contributions. This means that
workers are paid based on their contributions to the conver-
sation over any span of time, preventing them from being
encouraged to leave sooner by paying a fixed amount. Fur-
ther more, we expect workers will be encouraged to remain
connected longer than they otherwise would because of the
promise of continued pay and because they are compensated
for their increased knowledge of the task as it continues.

During our example, Susan only paid a small amount for
workers to complete her task because workers were paid
based on their useful input, and she was able to pay the
crowd only for a small unit of time (a few minutes). This
is considerably cheaper than hiring an individual, dedicated
employee to serve as Susan’s assistant.

EXPERIMENTS
To test the feasibility of using the crowd as a conversational
partner, we performed experiments focusing on two differ-
ent aspects: conversational consistency (measured in terms
of topic maintenance) and memory of past events (measured
in terms of factual recall). In all experiments, the crowd was
recruited from Amazon Mechanical Turk users who were
US-based with accuracy of 90% or higher. These workers
were paid 5 cents plus an additional half-cent for each mes-
sage successfully accepted by Chorus. Our tests used a total
of 33 unique workers with a mean of 6.7, and median of 7
workers per trial.

In our experiments we focused on the crowd’s ability to gen-
erate reasonable responses in a controlled environment. To
ensure that the results were not skewed by the varying qual-
ity of users, task descriptions, or communication styles, we
generated a script for each of our tasks and asked a student
volunteer to follow the script as closely as they could, while

still allowing the conversation to flow naturally as it would if
they were talking to another person (all while following the
persona laid out in the script).

Conversational Consistency and Dialogue
In this test, we sought to measure whether the crowd can
hold a consistent conversation. We define consistency as the
ability to hold a conversation without inappropriately chang-
ing topics, repeating information unnecessarily, or providing
answers not desired by the other party.

To test consistency, we created user scripts that gave a high-
level description of two topics that could be covered in the
conversation: i) where to go to lunch, including if it would
be worth going to a particular destination, and what the best
mode of transportation was recommended to get there, and
ii) what the average weight of a given breed of dog was,
then determining if that size dog was appropriate for life in
an apartment. One of these scripts was used in each test,
and conversations were allowed to be free-form as long as
the topic was addressed. For these tests, workers were not
provided any chat history on which to base their answers.

Trials were spaced out over a period of two days and the
conditions (memory or consistency) randomized. Parame-
ters such as the location and dog breed were changed be-
tween tasks so that any returning workers would not already
know what to expect from the conversations.

To avoid bias when holding the conversations, we recruited
an undergraduate student who was unfamiliar with the project
to hold conversations based on our scripts. They were asked
to hold a conversation until responses to all three questions
were provided or 10 minutes passed without a correct an-
swer. Once done, two of the authors coded the responses
according to the following scheme:

• On-Topic: The response furthers the topic of conversa-
tion that the user proposed by providing an answer or
opinion related to the question that the user asked. If
the relevance of a response is unclear, the user’s response
(correction or affirmation) is used to determine its status.
• Off-Topic: The response is either not clearly related to

the user’s current topic (including unsolicited information
about the worker them self) or provides an instantly iden-
tifiable incorrect answer to the user’s question (for exam-
ple, Q:“What is the capitol of Texas?” A:“Outer space.”)

• Clarification: The response asks a clarifying question to
either confirm a fact or request the user provide more de-
tails about their question. The question must be clearly
based on the user’s topic.
• Generic: The response does not obviously contribute to

the conversation, but is not invalid or out of place (does
not break the topic flow). Generic input also does not elicit
or receive a response from the user.

We discarded generic statements that were not clearly rele-
vant to the conversation at hand (i.e. “I see.”) since, even if
appropriate, these responses could have been provided at any
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Figure 3. A clipped view of the raw chat log (left), and the filtered view seen by the requester (right). Messages in pink did not receive sufficient votes
from the crowd to make it into the requester view. Some of these messages did not contribute to the conversation (e.g. new workers asking questions
about the HIT in the beginning), while others were simply not chosen.

point by users without first understanding the context of the
current speech. Including these utterances in the final num-
bers would only have improved results, since none of them
occurred at inappropriate times in the conversation, such as
when the user was expecting a factual response. Addition-
ally, we tracked the number of user-generated questions that
were answered correctly and incorrectly. We considered an
answer correct when the information provided eventually
lead to a response that required no followup or additional
action to by the user.

Memory
To test the system’s ability to remember information over
time, we ran an experiment that simulates new members of
the crowd arriving to Chorus to find pre-populated short-
and long-term memory logs. We wanted to find whether
the crowd would be willing and able to use the highlighted
history logs to bring themselves up to speed on the current
conversation. We generated an artificial chat history and pre-
sented new workers with information pre-highlighted by the
authors in the memory window. This simulates a prior chat
interaction carried out by past participants in Chorus. In our
test, the artificial chat history simulates a conversation be-

tween a user and Chorus concerning a trip the user is taking,
and contains information about the user’s dietary restrictions
and the city she is visiting. We asked the crowd to ‘continue’
the conversation with a new live user, and asked them ques-
tions that assume background available from the memory,
including suggestions for new restaurants in the area. The
user’s script assumed that the crowd had full knowledge of
prior interactions, and did not contain reminders about facts
previously mentioned. The user was free to specify these
facts only if explicitly prompted by the crowd.

Measurements
From these dialogues, we calculated the total percentage of
all dialogue that was forwarded to users (visible dialogue),
the proportion of the visible dialogue that was on-topic, the
error rate in the visible dialogue, the percentage of user queries
that were successfully answered, the number of times work-
ers correctly leveraged the memory interface when referenc-
ing facts that had been covered before they arrived, and the
number of times workers failed to do so. Each of these
events were identified by two of the authors independently
reviewing and marking results, then marking an event when
there was agreement.
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Accurate 
Responses

Clarifications 
Asked

Total 
Lines

Questions 
Asked

Memory 
Failures

Errors 
Made

Answers 
Provided

Memory 
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Consistency #1
Consistency #1
Consistency #1

Memory #1
Memory #2
Memory #3
Memory #4

24
55
33
138
63
30
28

4
7
2
5
4
3
3

9
50
11
53
15
29
7

0
1
0
30
1
1
0

0
0
0
3
1
1
2

4
6
2
3
2
3
2

-
-
-
4
1
1
2

-
-
-
2
0
0
0

Figure 4. Results for the conversations with Chorus..
RESULTS
In our analyses, we reviewed several hundred lines of con-
versation and interaction with Chorus following our two lines
of inquiry. Overall, we found that Chorus filtered out all
but 46.9% of responses given by the crowd and answered
84.62% of inquiries correctly and with useful information.
The details of each set of trials are discussed below.

Consistency
We ran three consistency experiments. In each, we used 3
conversations spanning a total of 112 lines suggested by the
crowd. This was filtered down to 70 lines by the curation
system, resulting in only a single off-topic line being spoken
across all three conversations. A set of 13 questions were
asked with 12 answered successfully by the crowd during
conversation. These results are summarized in Figure 4. For
these conversations, collective memory was not needed.

Memory
We ran four memory experiments. In each, we held 3 con-
versations spanning a total of 259 lines suggested by the
crowd. This was filtered down to 104 lines by the curation
system. In a majority of trials, the chat history contained
potentially useful information or highlights almost exclu-
sively. However, in one trial, a single user from a large crowd
flooded the selection area with irrelevant answers, blocking
out other suggestions and leading to a significant source of
error. This suggests that selective muting features should be
added to the interface to help workers filter more efficiently,
helping to mitigate the impact of actively malicious workers.
Alternatively, we are exploring the effects of imposing a rate
limit on the number of responses that can be given to one
query by the user.

The crowd was frequently successful in recalling facts using
working memory. We separately recorded both successful
use of the working memory to recall facts and failure to do
so (see Figure 4). In 8 of 10 conversations, the crowd was
able to recall facts stored in the working memory from prior
sessions, but in the remaining 2 scenarios, required prompt-
ing. We found that prompted crowds displayed a cascade
effect, where workers were rapidly able to identify forgotten
facts when prompted and mark them as salient.

Additional Observations
Interestingly, in some cases the crowd provided serendipity
unavailable in traditional autonomous search, with workers
suggesting outcomes not considered by the original partici-
pant and building on one another’s responses. For instance,
in a typical example, the requester provided Chorus with the
query, “I am looking for a place to eat dinner.” Chorus re-
sponded with “There is Asian Fusion joint on 3rd and Molly

Ave. It serves amazing cuisine.” Following a brief interlude,
the crowd provided the additional, unsolicited suggestion, “I
also saw a Groupon for 1/2 off!” This occurred commonly:
in 26 accepted lines of discussion, workers prompted re-
questers with additional information concerning aspects not
initially suggested as part of the starting query. These results
(an effect of the information foraging behavior of groups) are
deeper than those that would be obtained through search on
a site such as Yelp, and suggests that there is additional util-
ity in using conversations with humans as an intermediary
when interacting with software. In particular, a crowd-based
dialogue partner can significantly augment and improve the
utility of software interfaces by providing parallelized search
and the ability to recognize and provide relevant facts based
on their personal knowledge.

DISCUSSION AND FUTURE WORK
The ability to hold consistent, in-depth, conversations with
the crowd opens up a range of interaction possibilities. In
this section we focus on potential improvements that can be
made to Chorus to improve performance, longer-term issues
with reliability in critical situations, and some of the impli-
cations for users’ privacy.

Future Studies
Our tests showed that the crowd was able to generate con-
sistent and helpful responses to users with reasonably high
reliability. We are currently working on deploying this sys-
tem in a variety of situations, including more complex soft-
ware such as a restaurant reservation and flight booking ap-
plications. We are also investigating the idea of ‘embodied
crowds’ via a mobile crowd-powered information kiosk that
can answer general questions using Chorus to present users
with a conversational interface.

For many applications such as these, we are also interested
whether or not the crowd can respond with high quality feed-
back, compared to what an individual might present. Qual-
ity could be gauged by not only if the user’s need was met
but how well it was met. For example, in the restaurant
finding task, proposing McDonalds as a solution might be
valid answer, but not one that is always very helpful to the
user. Qualitatively, in both the experiments we present in
this paper and in continued testing, the crowd has consis-
tently made very useful suggestions that went well beyond
the minimum effort. This behavior is supported by the two-
role (proposers and voters) system that requires only a small
subset of the workers to seek out high-quality information,
whereas the rest need only to identify the relative utility of
an answer and agree with the best one by voting.

System Improvements
Initial tests revealed the ability of malicious workers to con-
tinuously spam and abuse the voting feature, even when they
are not being rewarded to do so. To rectify this problem,
we’ve added restrictions on participation between exchanges
with the end user. We found that roughly three total contri-
butions was an effective limit on the number of responses to
a single user query. In addition, displaying this information
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provides clear feedback that workers cannot submit unlim-
ited contributions prior to their first spam message.

We also observed that some workers mistakenly used the
collective memory window as another chat interface rather
than filtered history. This appeared to be mostly due to work-
ers not reading the directions fully or trying to bypass the
filtering step and speak directly to users (which was not pos-
sible). To remedy this, we placed a minimum score thresh-
old that must be met in order to submit free-text input to
the crowd memory, ensuring that only previously-successful
workers who fully understood the task were eligible to make
this type of contribution.

Due to some irrelevant messages passing through our filters,
we provided the end user with the ability to reject these mes-
sages. The poster as well as any worker who voted for the
post, would receive a point penalty. User rejections provide
workers with feedback on input and additionally increase in-
centives for positive contributions.

Complex Agreement
Our tests dealt with straight forward factual and general opin-
ion questions as a proof of concept for the system, however,
some use cases of Chorus might require the crowd to an-
swer polarizing or even fictitious queries, such as in the case
of using Chorus to portray characters in a virtual environ-
ment such as a video game or training program. In this case,
the crowd must act consistently with beliefs that might not
be held by any constituent member, and prevent biases and
contradictory opinions from coming through in the response.

Reliability
The possibility of using Chorus is real-world settings means
that important situations will arise in which an answer from
the crowd must be trusted and thus needs to be as reliable as
possible. While our work shows Chorus is able to remove
noise from the crowd’s feedback to users, it is not yet clear
that it can successfully cope with the input of intentionally
malicious workers. If a worker were to propose a restaurant
which they knew served a type of food that the user was al-
lergic to but was not obvious from the name, such as “John’s
Grill” serving seafood, then it is possible the other crowd
workers will agree with the option without doing further (un-
rewarded) research. Similarly, worker’s might propose such
an option with good intentions, but not do sufficient infor-
mation gathering to find out subtle but important facts.

In future work, our goal is to find ways to encourage work-
ers to do these type of deep knowledge searches, then use
redundant results of deep searches performed by different
workers to increase the reliability of the system on critical
tasks where the additional cost is warranted.

Privacy
Crowds that are capable of learning about users over time
introduce privacy concerns. As with many communication
technologies, users must be mindful of the fact that others
can view the information they provide to the system and ad-
just their behaviors and use of the system accordingly. To

support this, developers must take care to make users aware
of the fact that people, not just software, are used to support
their system in order to facilitate these behavioral choices.

APPLICATIONS
Providing a means of two-way natural language communica-
tion with a crowd agent who is not only reliable, but is avail-
able on-demand, and able to perform tasks autonomously for
indefinite amounts of time presents the opportunity for many
new systems which were previously not feasible. We discuss
a few of those in this section.

Natural Language Interfaces to Existing Systems
One of the most impactful uses of this system is to enable
semi-autonomous natural language interfaces for existing sys-
tems via both text and voice. In this work we focus on tasks
that the workers can individually perform then return with
the results, such as a web search task or general question an-
swering. However, to allow users to control specific systems
that they might not otherwise have direct access to, we need
workers to be able to collectively control the current inter-
face based on the knowledge of the situation and intention,
and provide feedback that takes into account the current task
and system state. In this paper we outline how context sen-
sitivity can be supported, and show crowds of web workers
can effectively maintain awareness of the current task. To
control the interface itself, an existing crowd control system
such as Legion [13] can be used.

Hands-free Interfaces
Using Chorus with crowd controlled interfaces allows devel-
opers to create single user interfaces designed to be use in or-
dinary situations that are still able to be voice-controlled and
partially automated without any modification or additional
development time. Furthermore, we can retrofit existing in-
terfaces in the same way. We envision this being particularly
helpful to disabled users, such as blind and motor impaired
users, and to ordinary users who are situationally disabled
[], such as when driving a car or performing another task
that does not allow for the use of a user’s vision or hands
while performing it.

Crowd Assistants
Chorus paves the way for using the crowd as an assistant
who is able to autonomously look up information and pro-
cess it in the context of past events in order to provide as-
sistance to users. Such an assistant will also be able to learn
about the user’s preferences over time, making it capable of
improving the quality of interaction with the user as it gains
experience. In this way, Chorus also acts to add a notion of
agency to existing software, allowing them to complete tasks
without the user’s explicit guidance at every step. In our ex-
ample scenario, the version of Chorus that Susan is using
acts as a crowd assistant operating from her mobile phone
via a web interface.

CONCLUSION
We have presented Chorus, a system that allows two-way
dialogue between a user and the crowd. Chorus allows the
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crowd to have one voice, as if it were a single individual,
instead of burdening the user with managing multiple lines
of conversation or limiting the interaction to use only one-
way communication. Through our example with Susan, who
needed directions and a restaurant recommendation while
driving, we showed how such a system could be of great
use in the real world.

We have demonstrated that the crowd could not only main-
tain a consistent conversation with users, but also learn and
remember over the course of both single and repeated in-
teractions. Finally, we outlined how this approach could be
used to more naturally interact with both existing and future
crowd-powered systems.
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