
Powering Spoken Language Interactions With the Crowd

Walter S. Lasecki1, Alan Ritter2 and Jeffrey P. Bigham3

ROC HCI Lab1

Computer Science Department
University of Rochester

wlasecki@cs.rochester.edu

Machine Learning Department2
Human Computer Interaction Institute3

Carnegie Mellon University
aritter@cs.cmu.edu

ABSTRACT
Spoken language interfaces (SLIs) have the potential to facilitate
more natural interactions between people and computers, but real-
izing this potential requires spoken language interfaces to not only
recognize the words people say but also the meaning and intent be-
hind them. These problems are very difficult to solve individually
and each must be solved for the other to perform optimally. As a
result, it is very difficult to build prototype systems that work well
enough to allow spoken language interaction to be studied in the
real world. This has limited our ability to understand how users
would want to interact with such systems and largely prevented the
collection of general high-quality training data that could improve
these systems. In this paper, we present a crowd-powered pipeline
that allows robust, interactive SLIs to be prototyped and deployed
today. The pipeline is at first entirely powered by human intelli-
gence, but smoothly scales towards being fully automated by using
the data it collects to improve the system.

Keywords
Crowdsourcing; conversational interaction; spoken dialog systems

Categories and Subject Descriptors
H.5.m. [Information Interfaces and Presentation]: Misc.

1. INTRODUCTION
Spoken language interfaces provide users with a more natural

way to interact with computers and information. However, in or-
der to be truly helpful, these systems must be intelligent enough to
understand both the content and context of users’ speech, as well
as their meaning and underlying intentions. Doing this effectively
requires solving two very difficult problems. First, the system must
capture speech and convert it to text. Second, the system must in-
terpret natural language. To make the situation worse, these two
problems confound one another: without understanding the mean-
ing of the text, it is hard to accurately capture speech input; and
without accurate speech input, it is hard to understand meaning.
Finally, data-driven approaches are difficult to bootstrap because
current systems cannot reliably hold conversations long enough to
collect realistic data.

The difficulty associated with developing and training these sys-
tems has resulted in spoken language interfaces that are brittle, that
only work in predefined domains, and that have high error rates. As
a result, they often frustrate users and give a poor initial impression
of what speech-based interaction can accomplish. Reliable pro-
totyping of dialog systems would allow for better, more realistic,
training, as well as greater insights into what types of interactions
are most beneficial to users. This would allow researchers to go be-
yond the current user biases that have arisen and limited the scope
of the assistance provided by fully automated systems.

	

Shared	

Context	

Output Module

Figure 1: A crowd-powered spoken dialog system architecture.
When users speak, it is converted to text in under 5 seconds
by Scribe using non-expert captionists. The text is then sent
to Chorus, a crowd-powered conversational assistant that gen-
erates an answer that is sent to the user in the form of text or
speech (using text-to-speech), depending on the output mod-
ule used. Both Scribe and Chorus can use input from existing
automated systems – automatic speech recognition (ASR) and
dialog systems respectively – by treating them as if they were
workers providing error-prone input. Context such as topic
information can be shared between speech processing, dialog,
and output components to further improve performance.

In this paper, we present our vision for how crowdsourcing can
be used to bring on-demand human intelligence to bear on both the
speech and language processing aspects of this problem in order to
allow for the collection of real-world data for training and evalu-
ation in the absence of a fully operational automated system. We
describe a pipeline (Figure 1) involving our crowd-powered speech
recognition system, Scribe, and conversational assistant, Chorus,
that is able to provide users with a reliable spoken language inter-
face, while also training automated systems in ways not previously
possible with existing datasets. This work also makes it possible
to create working spoken language systems today that allow re-
searchers to better understand how people interact with such sys-
tems, beyond a lab setting.

The rest of this paper is laid out as follows:

• We begin with an overview of prior work in both automated
Spoken Dialog Systems (SDSs), and crowd-powered speech-
to-text (Scribe) and conversational agents (Chorus).

1

Speech Source

Merging
Server

we have a crystal

have a crystal that has

we have a crystal that has a two-fold axis ... we have a crystal that has a two-fold axis

Output

Speech

Caption Stream

Merged
Captions

 has a two-fold axis

Flash Media
Server

Crowd Corrections

Scribe
System Overview

Figure 2: Scribe is a system that allows multiple non-expert workers to reliably convert speech to text in under 5 seconds by dividing
the task of typing what is heard over multiple people.

• We then describe the architecture of a crowd-powered spoken
dialog system that is capable of leveraging the strengths of
both human and machine intelligence.

• We then discuss how crowdsourcing can be used to change
the way spoken interactions are prototyped, and how auto-
mated SDSs can trained and tested, all in real-world settings.

• We conclude with a discussion of remaining challenges and
future work that is suggested by our existing systems and
proposed architecture.

2. RELATED WORK
We build on prior work in SDSs and crowd-powered systems.

2.1 Spoken Dialog Systems
Spoken dialogue systems have made tremendous progress over

the past several years. We have a fairly good understanding of how
to build dialogue systems given current technological limitations.
This is evident from the availability of general purpose frameworks
such as Olympus [3] which enable experts to develop systems for
new domains fairly easily. These systems are highly engineered for
specific scenarios, however, and quickly fail once the conversation
falls outside of their scope.

To move beyond these limitations and move towards more robust
dialogue systems we will need to break free of these limitations
and start working on individual subproblems within the context of
a working robust dialogue system. Previous work has leveraged
Wizard-of-Oz studies [5] to design user interactions in the absence
of a working system. Such studies are still limited because they
typically use a single human “Wizard” who controls the system.

2.2 Crowd-Powered Systems
In the meantime, human computation has been shown to be an ef-

fective means of solving problems that computers cannot yet solve.
By using crowdsourcing, open work calls to user communities or
labor platforms such as Amazon’s Mechanical Turk, human com-
putation can be accessed easily and on-demand [2]. We discuss
two main examples of continuous real-time systems that make the
crowd appear to end-users as a single reliable entity, or crowd agent
[9], to create interactive systems powered by the crowd.

2.2.1 Legion: Scribe
Legion:Scribe [7] is a system that allows groups of non-expert

workers to convert speech to text in real-time (i.e., with a latency
of less than 5 seconds). Scribe was initially envisioned as a means
of providing more affordable real-time captions for deaf and hard of
hearing students in classroom settings, where ASR is not even con-
sidered by service providers because of its poor accuracy. Instead,
highly skilled professionals who charge between $100 and $300,
are used. Scribe enables more affordable captions by using three
to five non-expert captionists can be recruited for around $10/hour,
making the total cost a fraction of that of a professional.

Scribe divides the audio input between workers (Figure 2) so
that no one workers is responsible for more than they can handle.
As workers caption content, their results are merged back into a
single transcript by a specialized multiple-sequence alignment al-
gorithm [13]. Scribe can also augment the audio signal (e.g., by
slowing it down [8]) in order to make workers’ task easier, and fur-
ther improve transcription quality. More generally, Scribe provides
an alternative to ASR that is more reliable, lower latency, and more
adaptable to new domains. When used as part of a spoken dialog
interface, Scribe can ensure reliable conversion of speech to text,
which can then be processed by the dialog system.

2.2.2 Chorus
Chorus [12] is a crowd-powered conversational assistant (Fig-

ure 3) that allows multiple crowd workers to act as a single, re-
liable conversational partner capable of answering general knowl-
edge questions. Chorus works by asking workers to propose and
vote on one another’s responses to the user. An incentive mecha-
nism elicits accurate responses from workers by paying more for
more impactful contributions – those proposing new answers that
others agree with get rewarded more than those who help mark ex-
isting answers as being helpful, who in turn get paid more than
those who do not propose or select answers that others in the crowd
consider helpful. Workers are also able to make notes to other cur-
rent and future workers in a “working memory” space that allows
workers to see the current context of the conversation, even if they
just joined. This allows the crowd to collectively stay on the same
page, and appear to the end-user as a single conversational partner.

2

Figure 3: Chorus is a crowd-powered conversational assistant
that elicits helpful, consistent answers from the crowd as if
they were a single conversational partner by using an incentive
mechanism and collective memory support.

By eliciting proposed responses and votes from workers in this
way, we not only create a system that is able to reliably converse
with users, but also generates more robust training data sets than
possible with prior systems. Typically, systems are able to see a
question or comment provided by a user, and (ideally) some ‘ac-
cept’, ‘reject’, or ‘retry’ information from the user’s response. In
Chorus on the other hand, each time a response is needed, multiple
answers are created and voted on by the crowd, meaning alternate
answers and their relative applicability rating (agreement) can be
used in the training process for a dialog system.

3. CROWDSOURCING SPOKEN DIALOG
INTERACTION

Using the crowd to support SDSs allows systems to make defin-
able parts of their system robust while others remain experimen-
tally automated, or choose to create systems that are completely
reliable from the end-users’ point of view, but of which only spe-
cific portions of the interaction is supported automatically.

3.1 Hybrid Systems
Our goal is to create a framework that uses the crowd to enhance

the ability of automated systems, instead of replacing it entirely.

3.1.1 Architecture
Figure 1 shows the architecture of a hybrid spoken dialog system

that uses both human and machine input to hold reliable conversa-
tions with users. Users can speak to the system naturally, and their
speech will be converted by Scribe into text that Chorus can show
to crowd workers and dialog systems. Chorus then formulates a
response and sends the response to an output module. The out-
put module can consist of plain text output, a text-to-speech (TTS)
system, a virtual agent, or any combination of these (and more).

This architecture is, by design, very similar to that of a tradi-
tional dialog system: the Scribe plays the role of the speech rec-
ognizer, Chorus is the input parser, dialog manager, and natural
language generator, and the output module provides feedback. The
difference is that by using people as part of the underlying com-
putational resources available, this architecture can more reliably

maintain context, prevent conversations from getting derailed, and
better understand users by leveraging common sense.

3.1.2 Building and Sharing Context
Using this hybrid architecture, we can build a shared context be-

tween different parts of the system to improve reliability, extending
prior work on using POMDPs [14]. Introducing the crowd can also
help further, for example, Scribe can create word sets that can be
used to recover topic information for Chorus workers, who can also
be asked to mark key words, helping to increase the accuracy of
topic modeling. Chorus workers can use the topic models created
from the proposed responses to create better language models that
Scribe can in turn use to better predict which words that workers
have typed are correct and fix mistakes where they are found. Fur-
thermore, both Scribe and Chorus can elicit the tone and mood of
the conversation from worker to ensure the response provided by
the output module have the correct inflection and emphasis.

3.1.3 Training AI Systems
Using the architecture described above, we propose to gather

high-quality training data within the context of a working system
to train models models capable of automating components of the
conversational agent in ways not previously possible. For exam-
ple, Chorus naturally generates multiple competing responses sug-
gested by workers, each of which is rated based on other workers’
votes, providing a natural source of training data for an automated
response ranking algorithm. We also envision crowd enabled open-
domain spoken dialog systems as a natural way to enable the collec-
tion of conversationally relevant commonsense knowledge, com-
plementary to existing large-scale knowledgebases such as NELL
[4]. Additionally, both Scribe and Chorus allow automated sys-
tems to propose their own answers (which are treated as potentially
unreliable just like any other worker) with the knowledge that the
crowd can correct for their mistakes. This lets systems get feedback
on even lower-confidence guesses without disrupting the end-user’s
experience from the system, letting the automated system “fail fast”
to learn more quickly.

3.1.4 Combining Human and Machine Intelligence
Humans and machines are better at different things, and as such,

combining their strengths can lead to better results than either can
achieve independently [6]. For example, people are still better at
holding conversations that feel natural, but cannot search for re-
quired information in a database as fast as a computer. Augmenting
peoples’ ability to respond appropriately by automatically fetching
information that might be useful can help crowd-powered systems
provide quicker responses without asking workers to generate an-
swers based on insufficient information. Since information retrieval
is difficult without complete understanding of the information need,
this assistance will likely be error-prone, but the validity of the re-
sults in most cases will be obvious to workers (e.g., is the answer
on-topic). This is an example of how computers can help in the
cases where they provide useful responses, without having harmful
effects when they make mistakes.

Humans and machines also make different types of errors, which
can be modeled to help improve error detection and the ability to
automatically rate confidence in a response. For example, when
comparing ASR to non-expert human captioning in Scribe, we see
that ASR is more likely to substitute an incorrect word that sounds
the same (e.g., “Lexus” for “axis”), whereas people are more likely
to substitute words that mean the same thing (e.g., “someone” for
“somebody”). If both agree on a word on the other hand, experi-
ence has shown that it is much more likely to the a correct word.

3

3.2 Prototyping and Exploratory Interactions
Creating and prototyping SDSs for new situations and roles is

often made difficult by low user expectations and systems unpre-
pared to handle situations that are not known a priori. As a result,
users may tend to avoid the system because they don’t know where
and when it will break. For example, when trying to prototype a
system that allows users to conversationally control their desktop
(as in Legion [9]), users are not used to having this ability at their
disposal and may initially use the system only rarely. This means
that there is minimal training data for a fully automated system to
use, and when this early-stage prototype makes mistakes, it only
makes users less likely to use it again in the future.

In these types of prototyping cases, the crowd can be used to
fill in for the automated system the first few times a specific do-
main is encountered. This allows end users to learn the capabilities
of the intended system, while also providing a means of collect-
ing use-case and training data that is helpful during the continuing
development of the automated system.

3.3 Deployable Systems
Crowdsourcing can also help systems already-deployed in real-

world situations. Unknown domains in deployed systems are often
a problem, similar to in the prototyping case. For instance, even
a change as simple as a new domain where the context or lexicon
used differs from prior examples can result in complete failure of
an automated system. In these cases, our crowd-powered pipeline
can provide a means of supporting deployed systems until enough
training data can be provided.

Scribe and Chorus can both individually be used in this capac-
ity by using ASR or an automated dialogue system in combination
with an active learning approach that calls on the crowd only when
that system’s confidence is low. This means that systems can flu-
idly adapt to and learn new situations that have not been previously
observed, and scale back to fully automated using this data. Sim-
ilar approaches can be used with a full spoken dialog pipeline to
immediately adapt to previously unseen domains.

Additionally, not all interactions that might have been prototyped
using the crowd in the manner described above can be automated
currently, or they fall in the “long tail” and are too costly to de-
velop relative to each one’s expected usage. This means a deployed
system might have known deficiencies. In these cases, the crowd
can be used to “fill in the gaps” until automated approaches can be
developed. Because of the relatively higher cost of calling on the
crowd versus an automated system (a few cents per response), sys-
tem designers must carefully trade off when increased accuracy or
functionality is worth the expense.

This is the use case explored by Legion:Ar [10], a system that
allowed deployed activity recognition systems to fluidly adapt to
and learn new actions that have not been previously observed by
getting labels on-demand from the crowd, and scaling back to fully
automated by using an active learning approach to decide when to
query the crowd. It is also possible to use this style of support to
help learn more complex knowledge about domains [11]. Similar
approaches can be used with dialog systems to immediately adapt
to previously unseen domains.

4. CHALLENGES AND FUTURE WORK
Future work will also explore how to get more direct training

information from the crowd. For example, PLOW [1] is a system
that allows users to train an automated system to do a task on the
web using natural language walkthroughs. Using crowd workers to
complete these tasks in real-time using Legion [9], and then train-
ing automated systems from descriptions of the actions performed

would allow systems to learn offline from the crowd based on situ-
ations they’ve encountered in real domains.

The crowd can also be used in the final part of the system we have
not yet discussed: the output module. For text-to-speech (TTS),
workers can be asked to record short audio clips. For consistency,
workers can be encouraged to complete multiple clips so the under-
lying voice changes as little as possible. Workers understand the
context and can more accurately capture appropriate intonation for
the content. TTS systems can even use this system to begin train-
ing on how to reply. For controlling an avatar, if one exists, workers
can also provide this same feedback in the form of signaling what
facial expressions or body language reactions should be used when
speaking a response. Adding this final component would allow us
to complete the loop of crowd support of dialog systems.

5. CONCLUSION
We have presented the architecture of a crowd-powered spoken

dialog pipeline that is capable of robust interaction with users in
open domains. This system can be used to quickly and flexibly
take the place of a dialog system, or help train an existing dialog
systems in order to scale towards being fully automated. For the
first time, this makes it possible to rapidly iterate on spoken dialog
interactions with real users, in real-world settings, to gain a better
understanding of how spoken interaction can support their needs.

6. ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation

under awards #IIS-1149709 and #IIS-1116051, and by a Microsoft
Research Ph.D. Fellowship.

7. REFERENCES
[1] Allen, J. F., Chambers, N., Ferguson, G., Galescu, L., Jung,

H., Swift, M., and Taysom, W. Plow: a collaborative task
learning agent. In AAAI (2007), 1514–1519.

[2] Bigham, J. P., Jayant, C., Ji, H., Little, G., Miller, A., Miller,
R. C., Miller, R., Tatarowicz, A., White, B., White, S., and
Yeh, T. Vizwiz: nearly real-time answers to visual questions.
In UIST (2010), 333–342.

[3] Bohus, D., Raux, A., Harris, T. K., Eskenazi, M., and
Rudnicky, A. I. Olympus: an open-source framework for
conversational spoken language interface research. In
NAACL workshop on Bridging the Gap: Academic and
Industrial Research in Dialog Technology (2007).

[4] Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka,
E. J., and Mitchell, T. Toward an architecture for
never-ending language learning. In AAAI (2010), 1306–1313.

[5] Dahlback, N., Jonsson, A., and Ahrenberg, L. Wizard of oz
studies: why and how. Knowledge-based systems (1993).

[6] Kamar, E., Hacker, S., and Horvitz, E. Combining human
and machine intelligence in large-scale crowdsourcing. In
AAMAS (2012), 467–474.

[7] Lasecki, W. S., Miller, C., Sadilek, A., Abumoussa, A.,
Borrello, D., Kushalnagar, R., and Bigham, J. P. Real-time
captioning by groups of non-experts. In UIST (2012), 23–34.

[8] Lasecki, W. S., Miller, C. D., and Bigham, J. P. Warping
Time for More Effective Real-Time Crowdsourcing. In CHI
(2013), 2033–2036.

[9] Lasecki, W. S., Murray, K. I., White, S., Miller, R. C., and
Bigham, J. P. Real-time crowd control of existing interfaces.
In UIST (2011), 23–32.

4

[10] Lasecki, W. S., Song, Y., Kautz, H., and Bigham, J. P.
Real-Time Crowd Labeling for Deployable Activity
Recognition. In CSCW (2013), 1203–1212.

[11] Lasecki, W. S., Weingard, L., Ferguson, G., and Bigham,
J. P. Finding Dependencies Between Actions Using the
Crowd. In CHI (2014).

[12] Lasecki, W. S., Wesley, R., Nichols, J., Kulkarni, A., and
Bigham, J. P. Chorus: A crowd-powered conversational
assistant. In UIST (2013), 151–162.

[13] Naim, I., Gildea, D., Lasecki, W. S., and Bigham, J. P. Text
alignment for real-time crowd captioning. NAACL (2013).

[14] Williams, J. D. and Young, S. Partially Observable Markov
Decision Processes for Spoken Dialog Systems. Computer
Speech and Language (2007), 393–422.

5

	1 Introduction
	2 Related Work
	2.1 Spoken Dialog Systems
	2.2 Crowd-Powered Systems
	2.2.1 Legion: Scribe
	2.2.2 Chorus

	3 Crowdsourcing Spoken Dialog Interaction
	3.1 Hybrid Systems
	3.1.1 Architecture
	3.1.2 Building and Sharing Context
	3.1.3 Training AI Systems
	3.1.4 Combining Human and Machine Intelligence

	3.2 Prototyping and Exploratory Interactions
	3.3 Deployable Systems

	4 Challenges and Future Work
	5 Conclusion
	6 Acknowledgements
	7 References

