
FlashDOM: Interacting with Flash Content from the

Document Object Model
Kyle I. Murray

Department of Computer Science
University of Rochester

Rochester, NY 14627 USA

kyle.murray@rochester.edu

ABSTRACT

Assistive technologies are often only adapted to emerging web

technologies after they are common enough to generate demand

for relevant assistive technology. This paper proposes a general

approach to speed up and simplify the process of making

assistive technologies compatible with innovation on the web by

providing hooks to the browser’s standard Document Object

Model that expose the capabilities of a new technology.

In this paper, we will illustrate the utility of this model by

applying it to Adobe Flash content, which, despite years of

attempts to produce more accessible content, remains woefully

inaccessible.

We show how this approach enables screen readers that would

normally not have permission to read Flash content to access this

content, and how it can enable interactivity with Flash content in

a modern browser.

Categories and Subject Descriptors

K.4.2 [Social Issues]: Assistive technologies for persons with

disabilities; H.5.2 [Information Interfaces and Presentation]:

User Interfaces

General Terms

Design, Human Factors, Standardization

Keywords

Accessibility, assistive technology, Flash, screen reader,

document object model

1. INTRODUCTION
Adobe Flash Player has achieved near-ubiquity on the web as a

plugin that enables various types of multimedia in the browser

[2]. Despite the prevalence of open formats on the web and the

existence of an open specification for the SWF format that Flash

Player reads, content developed in Flash is often entirely

inaccessible to assistive technologies that seek to convey

information in a form that is different from the form that the

content author intended. Because the source code to Flash Player

is not available to the public, and because there are no fully-

featured alternatives to the player, the implementation of

facilities for assistive technologies to hook into are limited to

those that Adobe includes in the player.

FlashDOM is an implementation of our approach to exposing

Flash content to the browser in a way that allows extant assistive

technologies to interface with Flash content in the same way that

they interact with web formats such as HTML and the Document

Object Model that is exposed by JavaScript and the browser.

We built FlashDOM into the web-based screen reader

WebAnywhere [4]. When a user visits a page with Flash content,

the web proxy that sits between WebAnywhere and the web

detects that Flash content is being loaded. Instead of serving the

exact file that is requested, FlashDOM returns a wrapper file that

subsequently loads the original file.

The wrapper enables FlashDOM to extract information about the

structure and interactive features of the Flash content that are

sent to the HTML host page as DOM elements, just like the

DOM elements that appear throughout the rest of the web.

2. RELATED WORK

2.1 Accessibility Evaluators
Saito et al. [5] used a similar Flash-JavaScript bridge strategy to

extract information from running Flash content in order to

perform accessibility evaluations on websites. The data collected

was transformed into XML that would be presented to an

evaluator. Although the extraction approach is similar, the data

was intended for evaluation and not as information for standard

web components that could be utilized by assistive technologies.

Consequently, their evaluator could not be used by users of a

screen reader in a situation where the user wanted to have Flash

content read in the same manner as an HTML-based page.

3. IMPLEMENTATION

3.1 DOM Extractor
The proxy that WebAnywhere uses to mirror web pages to the

user was modified to load all Flash files via a FlashDOM-aware

wrapper. The purpose of using the wrapper is that extra code is

included that explores the structure of the original content and

transmits that structure, via JavaScript, to the page being read by

WebAnywhere. Previously, Flash content was inaccessible to

WebAnywhere and available to a very limited extent to other

forms of assistive technologies.

The FlashDOM extractor supports many of the user interface

elements from the HTML DOM that have analogues in Flash

Player in addition to simply extracting text. Specifically, it

extracts text input fields, clickable regions like buttons, and

structured lists of elements. After user input, the extractor
Copyright is held by the author/owner(s).

ASSETS’10, October 25–27, 2010, Orlando, Florida, USA.

ACM 978-1-60558-881-0/10/10.

updates the HTML DOM to include the newly-updated Flash

content.

The structure of the Flash content that is sent to the DOM is not

simply static information. Because the event model used by

Flash Player is essentially the same as the DOM event model,

interactions like keyboard strokes, mouse pointer clicks, and link

activations can be passed back and forth between the HTML

structure generated by FlashDOM and the Flash plugin instance.

As a result, typing in an HTML text field will immediately be

reflected in the Flash movie, and pressing a button can trigger

Flash to submit data collected in a form.

3.2 Bytecode Analyzer
The bytecode analyzer is a tool that parses the SWF file and the

ActionScript bytecode [1] inside of it that was generated by a

content developer writing ActionScript code. Once parsed, the

bytecode is represented as a class-level abstraction that is

manipulated by the wrapper. Its primary purpose is to analyze

the bytecode sequences for instructions that make so-called

URLRequests, or any sort of network communication that would

bypass the WebAnywhere proxy. Any offending bytecode

sequences are rewritten in such a way that the URLs that are on

the runtime stack are passed through a proxy function that maps

the original URL to one that WebAnywhere proxies.

The changes to the bytecode are written back into an abstract

representation of an SWF file [3] that is loaded into the running

wrapper that can communicate the actual structure of the Flash

content to the web page. Effectively, these modifications allow

Flash content that relies on relative URLs to run without

breaking in an environment mirrored by a proxy. Furthermore,

the generic bytecode abstraction developed for FlashDOM allows

for future changes to be made to the bytecode modifier.

4. DISCUSSION
FlashDOM provides a generic way to allow a Flash movie to

expose its information and interactivity in a way that allows

existing assistive technologies made for accessing traditional web

content like HTML to access information that was previously

difficult to access given the closed nature of Flash Player.

In actual usage of our implementation, there are capabilities of

Flash that are not adequately replicated or areas that are not

replicated at all, such as the streaming videos and

communications over web sockets. These are limitations of our

design and of the extant proxy in WebAnywhere. These

limitations made user-testing infeasible in FlashDOM’s first

iteration, since a few of the most popular Flash-based sites tend

to use technologies like video streaming which requires a more

complex proxy than the one used by WebAnywhere.

Due to the complexity of the ActionScript bytecode specification

[1] and the added complexity of merging that bytecode with the

SWF format [3], our implementation of FlashDOM experiences

some level of instability when faced with the huge variety of

Flash content on the internet. Particularly, legacy scripts written

for versions of Flash Player prior to version 9 are not considered

by the bytecode analyzer. Although these instability problems

are not inherent to our approach, their appearance in our

implementation diminishes its current utility.

5. FUTURE WORK
The prevalence of assistive technologies for the HTML- and

DOM- based web suggests that reflecting information about

Flash as part of that DOM would have more applications than

integration with WebAnywhere. Particularly, a browser

extension that provided FlashDOM’s functionality would reduce

the dependency on WebAnywhere for people who use other

assistive technologies or for automatic data-mining of Flash

applications at runtime.

Additionally, more robust support for all of the capabilities that

Flash provides would increase the utility of FlashDOM to sites

with heavy streaming media or complex, socket-based server

communication. The addition of these features would bring

FlashDOM to the point where it would be practical to conduct

tests with daily screen reader users.

6. REFERENCES
[1] Adobe Systems, Inc. 2007. ActionScript Virtual Machine 2

(AVM2) Overview.

http://www.adobe.com/devnet/actionscript/articles/avm2ov

erview.pdf.

[2] Adobe Systems, Inc. 2009. Adobe Flash Player PC

Penetration.

http://www.adobe.com/products/player_census/flashplayer/

PC.html

[3] Adobe Systems, Inc. 2008. SWF File Format Specification

Version 10.

http://www.adobe.com/devnet/swf/pdf/swf_file_format_spe

c_v10.pdf.

[4] Jeffrey P. Bigham, Craig M. Prince and Richard E. Ladner.

2008. WebAnywhere: A Screen Reader On-the-Go. In

Proceedings of the International Cross-Disciplinary

Conference on Web Accessibility (W4A 2008), Beijing,

China.

[5] Shin Saito, Hironobu Takagi, Chieko Asakawa. 2006.

Transforming Flash to XML for Accessibility Evaluations,

Proceedings of the 8th International ACM SIGACCESS

Conference on Computers and Accessibility, October 23-

25, 2006, Portland, Oregon, USA. DOI=

http://doi.acm.org/10.1145/1168987.1169015

http://www.adobe.com/devnet/actionscript/articles/avm2overview.pdf
http://www.adobe.com/devnet/actionscript/articles/avm2overview.pdf
http://www.adobe.com/products/player_census/flashplayer/PC.html
http://www.adobe.com/products/player_census/flashplayer/PC.html
http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v10.pdf
http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v10.pdf
http://doi.acm.org/10.1145/1168987.1169015

	assets3015r-murray.pdf
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Accessibility Evaluators

	3. IMPLEMENTATION
	3.1 DOM Extractor

	3.2 Bytecode Analyzer
	4. DISCUSSION
	5. FUTURE WORK
	6. REFERENCES

	assets3015r-murray__
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Accessibility Evaluators

	3. IMPLEMENTATION
	3.1 DOM Extractor

	3.2 Bytecode Analyzer
	4. DISCUSSION
	5. FUTURE WORK
	6. REFERENCES

