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ABSTRACT
We introduce flash teams, a framework for dynamically as-
sembling and managing paid experts from the crowd. Flash
teams advance a vision of expert crowd work that accom-
plishes complex, interdependent goals such as engineering
and design. These teams consist of sequences of linked mod-
ular tasks and handoffs that can be computationally managed.
Interactive systems reason about and manipulate these teams’
structures: for example, flash teams can be recombined to
form larger organizations and authored automatically in re-
sponse to a user’s request. Flash teams can also hire more
people elastically in reaction to task needs, and pipeline in-
termediate output to accelerate completion times. To enable
flash teams, we present Foundry, an end-user authoring plat-
form and runtime manager. Foundry allows users to author
modular tasks, then manages teams through handoffs of inter-
mediate work. We demonstrate that Foundry and flash teams
enable crowdsourcing of a broad class of goals including de-
sign prototyping, course development, and film animation, in
half the work time of traditional self-managed teams.
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INTRODUCTION
Crowdsourcing systems coordinate large groups of people to
solve problems that a single individual could not achieve at
the same scale. Microtasking systems typically use highly-
controlled workflows to manage paid, non-expert workers to-
ward expert-level results (e.g., [6, 28, 10, 25, 38]). While
these crowdsourcing approaches are effective for simple in-
dependent tasks, many real-world tasks such as software de-
velopment and design remain largely out of reach. Such tasks
require deep domain knowledge that is difficult to decompose
into independent microtasks anyone can complete [26, 42,
40]. Unlocking these capabilities is critical to the vision of
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universal, on-demand crowd support for end users. For ex-
ample, could we enable anybody with a napkin sketch of a
design idea to ask the crowd to follow the user-centered de-
sign process and create a user-tested, high-fidelity prototype
of that idea within twenty-four hours?

In this paper, we explore the feasibility of solving these com-
plex, interdependent problems via structured collaborations
between experts from the crowd. We aim to gather experts
from online marketplaces such as oDesk [1] into small teams
that can, for example, follow the user-centered design process
to transform a napkin sketch into a fully user-tested proto-
type, create an animated movie from a prompt, or develop an
entire online class platform complete with video content and
quizzes — all in roughly one day.

Experts from the crowd, however, tend to work as isolated
contractors, and microtask crowdsourcing techniques (e.g.,
[2, 30, 6, 25, 43]) cannot coordinate these experts because
they do not effectively leverage participants’ diverse skills
and expertise. To enable end users to reliably crowdsource
complex work, we take inspiration from organizational be-
havior research that suggests even temporary groups can co-
ordinate complex work effectively, if they have an enabling
team structure [41] to encode who is working together and
who is responsible for which tasks [8, 5]. Our goal is to create
such structures with far less manual effort and more scalable
replicability than traditional organizations.

To achieve this goal, we frame expert crowd work around
sequences of linked tasks. We hypothesize that these chains
of focused work could maintain the coordinating strength of
lightweight team structures while providing a representation
that interactive systems can leverage to support collaboration,
create new teams automatically, grow and shrink teams on de-
mand, and combine teams into larger organizations.

We thus present flash teams, a framework for dynamically as-
sembling and managing crowdsourced expert teams. Flash
teams are a sequence of modular tasks that draw on paid ex-
perts from the crowd. Each task in a flash team requires an
input (e.g., low-fidelity prototype) and produces an output
of another type (e.g., heuristic evaluation). End users cre-
ate workflows by linking these modular tasks together to pass
each task’s output as input to the next task. They then use
a web application to launch and manage the team, monitor-
ing the workflow if desired. For example, when creating a
user-centered design flash team, the user might begin with a
task where a UI designer creates a low-fidelity mockup of the
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Figure 1: A flash team is a linked set of modular tasks that draw upon paid experts from the crowd, often three to six at a time, on demand. The napkin
sketch design team follows the user-centered design process to create a series of prototypes and iterate based on feedback to produce a user-tested
software prototype within a day. Multiple arrows indicate the beginning and end of pipelining; lighter bars indicate possible elastic growth.

user’s idea. The designer would pass the mockup on to a UX
researcher for a heuristic evaluation. Tasks would proceed
through the chain of a revised mockup, a high-fidelity pro-
totype, a user study and a revised software prototype, cross-
ing diverse expertise from one or more UI designers, UX re-
searchers, and software developers.

Flash teams’ modular task structure is transparent to compu-
tational systems, enabling those systems to leverage the struc-
ture to orchestrate crowd dynamics. For example, teams can
be combined: since teams are modular, their component tasks
can be composed like Lego blocks to form larger organiza-
tions that persist only for a day or an afternoon. Moreover, by
leveraging automated path search through the space of pre-
vious teams’ intermediate inputs and outputs, end users can
assemble a flash team on-demand by providing only the de-
sired input and output. During runtime, flash teams are elas-
tic: they grow and shrink to meet task demands by hiring
additional members from the crowd. Finally, their work can
be pipelined: when in-progress results are enough for down-
stream tasks to begin work, the system passes in-progress re-
sults along to accelerate completion times.

We embody this approach in Foundry, a platform for end
users to create flash teams and a runtime environment to man-
age them. Foundry allows users to create flash teams by di-
rectly authoring each task or forking a team that other users
authored and then recruit from the oDesk online labor market-
place [1]. For team members, Foundry takes on managerial
responsibilities to walk team members through the workflow,
notify them of any schedule shifts, scaffold the handoff pro-
cess, and provide members with shared awareness [14]. For
the end user, Foundry abstracts away low-level management
effort while allowing for high-level oversight and guidance.

This research advances two important ideas. First, flash teams
are the first to leverage the scale of paid crowdsourcing for ex-
pert work. This approach pushes beyond volunteer peer pro-
duction systems with a vision of elastic and on-demand orga-
nizations that manage teams of paid experts from the crowd.
Second, this paper offers a method of scaling expert crowd
work through computational management of an elastic work-

force. Flash teams enable complex work at crowd scale by
automating the structures of traditional organizations. We
introduce specific affordances such as structured handoffs,
directly-responsible individuals (DRIs), and elastic growth,
embedded within the Foundry platform. Empirical results
from our field experiment demonstrate that flash teams can
accomplish efficient and high-quality work.

RELATED WORK
In this section, we connect two threads of research: crowd-
sourcing and organizational behavior.

Crowdsourcing with experts
Crowdsourcing research aims to integrate large-scale, API-
friendly labor marketplaces into software through open calls
and task decomposition. Crowdsourcing has largely focused
on tasks any individual can complete: many crowdsourcing
platforms are built to accomplish tasks that require little train-
ing (e.g., Amazon Mechanical Turk) and recruit amateurs
(e.g. FoldIt [10]). Consequently, most crowdsourcing work-
flows and algorithms [32] aim to structure non-expert contri-
butions to produce expert-level performance. For example,
MapReduce frameworks can guide crowds to write simple
encyclopedia entries [25], and clustering workflows can pro-
duce expert-level taxonomies [9]. These workflows can even
be authored by crowd members themselves [27]. Examples of
microtask crowds pursuing expert performance include docu-
ment editing [6], translation [21], and visual question answer-
ing [7]. AI techniques optimize these workflows [13]. Prior
work that has gone beyond microtasks has still focused on
recreating the performance of a single expert [29].

Prior work suggested that expertise might play a role in
crowdsourcing [26]: flash teams instantiate a first step to-
ward that goal. Other crowdsourcing campaigns already re-
cruit experts, for example using workflow support tools [33]
or helping solve planning problems [43]. Often these cam-
paigns focus on a single expertise area such as math [12]. To
date, these expert crowdsourcing efforts have been one-offs,
needing to create an online presence to gather participants for
each new goal. Our intent is to create a general approach and



platform that can support a large number of tasks on demand.
In doing so, we open the door to a range of higher-level work-
flows that can assume expert knowledge.

This work raises opportunities for platform design in expert
crowdsourcing. Foundry draws inspiration from visual work-
flow tools [24, 27] and management tools such as Gantt charts
to structure teams using a visual timeline language. It is pos-
sible to design for worker interest, honesty, and motivation
(e.g., [3, 15]); Foundry thus aims to make collaborators visi-
ble and make the larger goal clear. Software concepts such as
class hierarchies can integrate with business processes [34]:
Foundry instantiates this vision with team structures.

Organizational behavior
Organizational behavior (OB) research has identified the ob-
stacles to team coordination as well as the conditions and
structures that enable effective team coordination. Obstacles
to effective team coordination include geographic dispersion,
technology-mediated communication, and fluid (or changing)
team membership [39, 19, 11, 22]. These conditions impede
team coordination because team members lack a shared un-
derstanding of their overall task, and each person’s respon-
sibilities within the task [36]. Because their communication
is all electronically-mediated, teams also struggle to engage
in the rich communication necessary to build a shared un-
derstanding [11]. Teams of experts who are pulled from the
crowd will face these same obstacles in the extreme.

Foundry’s design is inspired by specific OB studies that show
how to support coordination under the challenging working
conditions confronted by crowdsourced expert teams.

First, Foundry’s composeable team structures are motivated
by OB studies of the purpose and functioning of team struc-
tures. Team structures enable coordination by encoding who
is responsible for what work and which team members are
interdependent [8]. Even in the absence of ongoing rela-
tionships, lightweight team structures can help even relative
strangers coordinate effectively, when the structures set up
shared space and shared work around strictly defined work
roles [41]. Second, Foundry’s modular design is influenced
by management modularity theory which shows how system
components must be “loosely coupled” and have a standard-
ized interface so that they can connect and interact in a va-
riety of configurations [4]. Third, Foundry’s design includes
several integration mechanisms such as pipelining, structured
handoffs and DRIs that address key points of coordination
(which OB research shows are often neglected) [18].

We argue that for teams of crowdsourced experts to be most
successful, they need to quickly understand their shared work,
interdependencies and respective roles in completing that
work [37]. Our aim is to provide the value of team struc-
tures, modularity, and coordinating mechanisms (as identified
in OB research), but to do so in ways that leverage automa-
tion, computation, and the scale and flexibility of the crowd.

FLASH TEAMS
In this section we introduce flash teams, which are
computationally-guided teams of crowd experts supported by

lightweight, reproducible and scalable team structures. Flash
teams aim to embed the techniques of high performing of-
fline teams within a model that can take advantage of com-
putation’s ability to abstract, scale, and visualize progress.
We take a position that expert crowd work can succeed via a
linked set of modular tasks that interface with each other by
publishing intermediate results. Each set of tasks is machine-
understandable, which means that interactive systems can
manage and manipulate the team structures so that flash teams
can grow, adapt, and recombine into larger organizations.

Flash team composition
To structure expert crowd work, flash teams require small
atomic actions called blocks. Each block represents one or
more experts performing a task. It requires an input, instruc-
tions for what one or more members of the crowd should do,
and specifies an output type (Figure 2). Blocks can then be
connected to other blocks that can accept compatible inputs
or outputs. Blocks aim to be self-contained so that they can be
reused in other contexts. Inputs and outputs are represented
as tags (e.g., heuristic evaluation report, character

art, voiceover script, voiceover audio files), and any
blocks that interface along the same input or output use the
same tag. For example, suppose the user is building a team to
execute the user-centered design process. Then, they might
create a heuristic evaluation block to take low fidelity

prototype as input and produce heuristic evaluation

report as output. That user could then connect the heuris-
tic evaluation block to any other block that takes heuristic

evaluation report as input, for example a block that revises
a mockup based on feedback.

Flash teams exhibit distributed leadership [33] where the user
(requester) may be coordinating with different workers in
each block. To avoid a diffusion of responsibility, for each
block, the project requester specifies a directly responsible
individual [31], or DRI, who takes on a temporary manage-
ment position for the duration of that task. For example, if a
task involves a collaboration between three software develop-
ers, one of those developers acts as the DRI and coordinates
workers, brokers agreements, and ensures the task is com-
pleted on time and at high quality.

Users assemble and manage a flash team by chaining blocks
like interlocking puzzle pieces to transform a starter input into
a desired final output. Blocks can execute in parallel or in
serial but they typically must wait on all their inputs to begin
work. The complete set of blocks determines which crowd
experts need to be recruited — for example, a UI designer,
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Figure 2: The basic unit of a flash team is a block, which gathers one or
more paid experts from the crowd to perform a focused task. Blocks can
be connected via shared inputs and outputs.



Figure 3: Foundry allows end users to author and manage flash teams.
In authoring mode, the user can specify the expertise for each block and
enter details about each block’s requirements.

Figure 4: Foundry’s runtime mode: the design mockups finished 30 min-
utes late but implementation finished early. The current user test block,
marked by a red playhead, involves both (orange and green) experts.

UX researcher, and two software engineers — and when they
are likely to be needed.

Foundry. Foundry (Figures 3–4) functions as both a flash
team authoring environment with strongly typed handoffs and
support for diverse expertise, and a runtime management plat-
form. Users add blocks to the timeline as they would on
a calendaring interface. Each block requires a title, a tar-
get length of time, input and output type tags, a description
of the task (ideally with an example), and one or more of
roughly 2,500 skills available on oDesk. To accelerate team
creation, and based on an observation that many teams share
some components, Foundry makes available a library of all
blocks that previous teams have used for drag-and-drop. With
Foundry, therefore, the requester can create new workflows
from scratch using the library of task modules, fork a previ-
ously created workflow, or use Foundry’s planner to formu-
late a workflow.

Most coordination between team members occurs via in-
put/output handoffs. Foundry focuses the user on explicitly
marking handoffs via arrows that connect tasks: this helps
make dependencies visible. When each block is complete,
worker(s) upload the output materials for their block to the
team’s shared folder, which Foundry automatically creates in
Google Drive. When two blocks occur at the same time (e.g.,
a logo design block should be coordinating with the home-
page layout block), users indicate that the blocks should be in
synchronous collaboration.

Runtime and coordination
Users either author a team from scratch, or borrow from a
list of existing teams and edit or run them. Workers are re-
cruited from oDesk using the skills described in the blocks.
oDesk provides a worker rating system that makes filtering

relatively simple. We have recruited workers for teams in as
little as fifteen minutes, and this number could decrease as
such platforms become more popular and optimized. When
the user is happy with their team, they launch the team by
clicking “Start” in the Foundry interface. Foundry switches
to runtime mode and adds a timer playhead that starts advanc-
ing along the timeline on the first block. Each worker receives
a unique link that logs them in to the Foundry runtime with
their tasks highlighted in the timeline.

Foundry embeds the basic affordances of computer-supported
cooperative work systems for distributed teams. While the
flash team is working, Foundry’s goal is to remove the re-
quester from as much management responsibility as possible
by leveraging what it knows about the flash team’s structure.
Requesters can monitor progress, provide feedback, and an-
swer questions through the chat. They can also pause the
process, tweak the team structure and resume.

Foundry always displays the overall progress through the
timeline, the currently active block details, and when the
logged-in worker’s next task begins. When a worker marks
a block as complete, Foundry notifies workers for the next
blocks that their task is active. Additionally, Foundry main-
tains awareness through a chat window that allows workers
to coordinate out-of-band and the user to provide feedback
on the process as it occurs.

It is not uncommon for teams to require tweaks as they go:
for example, a task may finish early or run late. If a task
finishes early, Foundry recalculates the starting times for all
downstream tasks and emails all impacted workers with a new
estimated start time for their next task. Likewise, if a task
runs late, Foundry emails the DRI with a link to a form that
requests the estimated time to completion. When the worker
fills out the form, downstream tasks are again recalculated
and workers are notified of the new start times.

Computationally-enhanced flash teams
Computation can leverage the machine-readable workflow
representation of flash teams. For example, we can use a
block’s output tag to recommend a list of blocks that use the
same tag as an input. In this section, we introduce mecha-
nisms for Foundry to react, optimize and author flash teams
on demand.

Modular combinations of teams
Because the blocks are modular and have clear boundaries,
flash teams can be combined to create larger organizations.
Entire teams can be abstracted into a block, much like one
function in a computer program might contain many other
function calls inside it. For example, to create a new platform
for a massive open online course (MOOC), one flash team
might combine several teams that can design and implement
software with additional teams that can develop educational
materials and animated videos. Each team might be forked
from previously used teams in Foundry and tweaked for the
particular needs of the project.

Through combination, users can create not just teams but the
equivalent of entire small organizations for an afternoon or
a day. These combinations draw on the elastic nature of the



crowd by instantiating multiple copies of a flash team, and
multiple types of teams, with little downtime.

Path search support for team authoring
So far, Foundry assumes that end users are fluent with creat-
ing teams (e.g., authoring tasks and handoffs). Most people,
however, are neither natural programmers nor managers. In-
stead, they have a goal in mind that they want to accomplish,
but may not have a strong idea of how it might get completed.

For example, suppose a user wanted to embed themselves
as a character in their favorite video game. The user might
have no experience with art or video game modding, but
have a photograph of themselves and knows that they want
a 3D model to replace the default game avatar with. Using
this, the system explores the set of existing teams and real-
izes that the photograph can be used as source material

for a fashion designer from a theatre production task who
creates a clothing sketch according to the world’s style.
The photograph and clothing sketch can then be passed
to an illustrator from an eBook task, who in turn creates a 2D

drawing of character art. The 2D drawing is then used by a
3D modeling expert originally from a product mock-up team
to create a 3D model which can be imported into the game.

By leveraging blocks’ shared input/output tags, Foundry can
search through the space of novel team combinations. If the
user knows what they want, they can tell Foundry their starter
input (e.g., character sketch) from the list of previously-
observed tags and the output they want (e.g., 3D model). If
there is a path through the known blocks that can solve the
user’s problem, Foundry will find it using an AI planner. The
resulting teams are not whole components of previous teams,
but subsets of blocks from many other teams that come to-
gether to enable a new goal. The user can review the team to
ensure that all team blocks make sense in this new context.

This team was automatically generated on demand to fill in
details that the user may not have been able to specify them-
selves. The members of the team were not drawn from prior
teams with a focus on video games, but Foundry identified
that previous blocks shared an input/output vocabulary and
could thus interface with each other. It brought them together
to effectively complete the desired task.

Because of teams’ modularity, the number of possible teams
grows combinatorially with the number of teams seen by the
system. Foundry thus uses a planning algorithm to find a
set of blocks that connect from original input to final out-
put, if such a path exists. We represent all known blocks in
the STRIPS planning language [17]. Each block becomes a
STRIPS action with all required inputs combined via a logi-
cal conjunction as the precondition, and all outputs listed as
postconditions. An automated planner searches through tran-
sitions that connect a given starting state to a desired end state
in order to find the shortest path. The general planning prob-
lem is NP-complete; however, boolean satisfiability solvers
can scale these systems to thousands of actions [23].

Elasticity
Simple workflows cannot react to changing requirements: for
example, a project may require additional help or a new skill.

Because crowdsourcing platforms allow quick recruitment,
the crowd can be an elastic resource, allowing teams to grow
and shrink as needed. Elastic growth allows a single team ab-
straction to encompass a wide variety of actual runtime needs.

To enable elastic flash teams, the user specifies growth pa-
rameters for a block. The block may, for example, now allow
up to two additional experts to join this task. If the user or the
DRI feel that growth would be helpful, they can request the
expansion and the user can approve it. One type of elasticity
is replication: for example, the DRI for a software develop-
ment task may ask for an additional developer to help accom-
plish the job on time. The second type of elasticity is special-
ization: if a team needs a specific skill, the DRI could recruit a
team member with that skill (e.g., logo design). For instance,
in one of the design teams, the team requested a Facebook
API expert because the application required it. Users need
to balance the temptation of growing a team against the in-
creased coordination costs of larger groups.

Pipelining
Flash teams have been described as blocking operations:
downstream tasks must wait for upstream tasks to complete
before they can start. However, in many scenarios, early re-
sults may be enough for a downstream task to begin.

Flash teams can thus be pipelined by streaming intermedi-
ate results as they are ready, rather waiting for the entire task
to complete. To pipeline a handoff, the user indicates that a
block can stream its output — for example, that the heuris-
tic evaluation block can stream each violation as the worker
identifies them. The user also indicates that the downstream
task can accept streamed results — for example, that the re-
vision of the low-fidelity mockup can fix each violation as it
arrives. The DRI for the upstream block uses Foundry to in-
dicate when the task is ready to start streaming, and Foundry
launches the downstream task.

Pipelining has two beneficial effects: less waiting and in-
creased collaboration. There is a risk that downstream tasks
might need to change course when they see more of the input,
but in our experience pipelining scenarios allow team mem-
bers to work productively in parallel. In addition, instead of
communicating through a single handoff, pipelining encour-
ages synchronous feedback between team members, reducing
the risk of communication failures or misunderstandings.

EXAMPLE FLASH TEAMS
In this section, we present several flash teams and their re-
sults. We demonstrate how flash teams execute complex and
creative tasks beyond the reach of paid microtasking and sur-
pass the capabilities of traditional organizations via their scal-
able and flexible structure.

Napkin Sketch Design Team
Rapid iteration is a core tenet of the user-centered design
process, and prototyping many ideas in parallel leads to im-
proved design outcomes [16]. Flash teams could enable a
designer to generate many ideas as sketches in a notebook,
then get them prototyped in parallel — from low-fidelity pro-
totypes, through a heuristic evaluation and live user testing, to



Task Type of Team Roles Time [hh:mm] Median Wage Total Cost
Happily App Napkin Sketch UX, UI, Dev 31:30 $26.85 $744.48
Eventick App Napkin Sketch UX, UI, Dev1, Dev2, Dev3 18:00 $28.78 $1,270.28
Icebreaker App Napkin Sketch UI, UX1, UX2, Dev1, Dev2 23:10 $31.38 $1,200.97
Animation Animation Director, Voiceover, Animator,

Illustrator, Scriptwriter
44:40 $56.94 $2,381.32

Diaphragm MOOC Education Content, Animation Education, Content, Director,
Animator, Actor, Voiceover

19:20 $30.14 $1,597.32

Photography MOOC Education Content, Animation Education, Content, Director,
Animator, Actor, Voiceover

19:00 $21.77 $741.58

Tower of Hanoi MOOC Education Content, Animation Education, Content, Director,
Animator, Voiceover

11:30 $18.52 $446.49

MOOC Platform Napkin Sketch 1, Napkin Sketch 2,
Napkin Sketch 3

UX1, UI1, Dev1, UX2, UI2,
Dev2, UX3, UI3, Dev3

13:00 $29.14 $1,015.80

Table 1: Eight flash teams created mobile web applications, video animations, and an online course platform with three courses.

(a) Happily, an emotion-tracking site. (b) Eventick, a local event billboard site. (c) Icebreaker: a local social network site.

Figure 5: Sketched inputs and high-fidelity prototype results from the napkin sketch design teams. This team iterates from a sketch through low fidelity
prototypes to produce a working, user-tested software prototype within a day.

an iterated high-fidelity prototype — in less than a day. This
rapid, parallel cycle could allow end users to quickly iterate
toward high-quality ideas.

The napkin sketch design team carries out the entire user-
centered design process starting from a napkin sketch of the
idea by combining techniques from HCI practice. Rather than
acting as a turn-crank design solution or replacing designer
insight, it enables designers to experiment and reflect on ideas
quickly. The complete napkin sketch design team blocks are:

• Low-fidelity prototype. Produce a mockup of the sketched
interface using a low-fidelity wireframing tool. Input:
napkin sketch. Output: low-fi mockup. Role: UI de-
signer. Target time: 2.5hr.

• Heuristic evaluation. Report the violations of Nielsen’s
heuristics for a design. Input: low-fi mockup OR high-fi

prototype. Output: heuristic evaluation. Role: UX
researcher. Target time: 2hr. Can pipeline output.

• Revised low-fidelity prototype. Iterate on a mockup
based on usability feedback. Input: low-fi mockup AND

(heuristic evaluation OR user study report). Out-
put: low-fi mockup. Role: UI designer. Target time: 4hr.
Can pipeline input.

• Software prototype. Create a hosted, high-fidelity web
prototype to instantiate a mockup design. Input: low-fi

mockup. Output: high-fi prototype. Role: Web devel-
oper (elastic 1-3).

• User study. Run at least three users through a prototype
and create a document that summarizes the results and
recommendations. Input: high-fi prototype OR low-fi

mockup. Output: user study report. Role: UX re-
searcher. Can pipeline output.

• Revised software prototype. Fix problems with the proto-
type that were identified by the user study. Input: high-fi
prototype AND user study report. Output: high-fi

prototype. Role: Web developer (elastic 1-3). Can
pipeline input.

Depending on whether the same workers participate in mul-
tiple blocks or new workers come online for each step, this
team involves three to ten experts in UI design, UX research
and web programming.

We ran the napkin sketch design team three times with inputs
of varying complexity, all for prototypes of mobile web appli-
cations (Figure 5). We obtained the original application ideas
and sketches from actual student projects in an Introduction
to HCI course. The first design sketch was for Happily, a web
application that helps users track their happiness throughout
the day. The second was for Eventick, a mobile application
where users can post local events and hear about events in
their area. The third was for Icebreaker, a social networking
site to help users find nearby individuals with common inter-
ests. These prototypes each contained roughly four working
pages, a database backend, and content-specific requirements
(e.g., Facebook API integration for Icebreaker).

Each flash team took advantage of more of flash teams’ com-
putational support than the previous iteration. Happily used
a basic, sequential workflow, where one task occurred at a
time and the next task could not begin until the previous one
was completed. Eventick enabled pipelining: both heuristic
evaluation and development began as soon as the first version
of the mockup was complete. It also enabled elastic growth
for replication, allowing the web development block to grow
from one to three developers. Icebreaker was the most com-



plex, enabling elastic growth for specialization: the DRI de-
veloper hired a developer specialized in Facebook API inte-
gration, and the team brought on a designer to create a logo
for the homepage. Icebreaker also pipelined the user study
results into the revised software prototype block.

These flash teams completed their prototypes in as little as
eighteen hours of active work (Table 1). Workers were typi-
cally paid $25–$30 per hour, and costs ranged from roughly
$750 to $1270 for up to five participants. The prototypes
strongly reflected the designs articulated in the original nap-
kin sketches, and many major design and usability problems
had been ironed out through the heuristic evaluation and user
study revisions. The initial napkin sketches and final proto-
types are shown in Figure 5. We did not optimize the team to
hand off across timezones, so actual wall clock time was often
longer as team members needed to sleep and take breaks.

Animation Team
A quick review of YouTube videos is enough to realize that
many people who have excellent ideas are not quite so excel-
lent at communicating them. Unfortunately, for most of these
people, hiring an expensive firm to bring their ideas to fruition
is the only alternative. The animation flash team aims to make
high quality video animations more broadly accessible. It
also exercises flash teams in a creative, non-engineering do-
main. The animation team takes a high-level script outline
as input and produces a short animated movie as output. The
core blocks of the animation team (Figure 6) included:

• Script. Write the video script. Input: script idea. Out-
put: script. Roles: director, scriptwriter. Target time: 2hr.

• Storyboard. Use the script to create a shot-by-shot story-
board for the video. Input: script. Output: storyboard.
Roles: director, animator. Target time: 2hr.

• Character design. Design the characters’ visual appear-
ance and develop their art assets. Input: script. Output:
character assets. Role: illustrator (elastic 1-3). Target
time: 4hr. Can pipeline output (draft/final designs).

• Character animation. Import and animate character assets
from the storyboard. Input: storyboard AND character

assets. Output: animation character layer. Role: ani-
mator (elastic 1-3). Target time: 7hr. Can pipeline input.

To develop the flash team structure, we collaborated with a
movie director from oDesk. The animation flash team con-
sists of five roles: director, scriptwriter, illustrator, animator,
and voiceover artist. Unlike the decentralized leadership of
the napkin sketch team, the director role participates actively
across the entire workflow. In the animation team we ran,
the task was to create an animation that captures a memory
from HCI researcher Terry Winograd’s early life, where Terry
builds a computer in his garage (Figure 7).

Education team
While many people step into the role of teacher at times, most
do so without aid or feedback from trained educators. In ad-
dition, while the web can teach a wide variety of concepts,
there are always concepts that are not well covered or not ex-
plained clearly where a user might want some explanation.
The education flash team allows anyone to generate a short

curriculum to learn a topic. It takes as input the educational
goal (e.g., “teach the basic mechanics of singing from the di-
aphragm”) and outputs a script that teaches the subject and
multiple-choice test questions to self-test the content. The
main blocks of the education team are:

• Script. Brainstorm and write out a script for the lesson.
Input: lesson idea. Output: lesson script. Roles: edu-
cator, topic area expert. Target time: 3hr.

• Quiz. Generate a quiz based on the content of the les-
son script. Input: lesson script. Output: lesson quiz.
Roles: educator, topic area expert. Target time: 1hr.

• Entertainment value script improvements. Edit the script
so it is as engaging as possible. Input: lesson script.
Output: edited script. Role: director. Target time: 1hr.

The team draws together three sets of skills: expertise in the
topic area of the lesson, curriculum development, and multi-
media direction. The director takes a final pass over the script
to ensure that it is as engaging as possible.

An example script snippet from a flash team generating a les-
son on singing from the diaphragm: “When you breathe in,
or inhale, your back muscles engage and expand. At the same
time, your diaphragm lowers so your lungs can expand.”

Composite team: online course platform
The napkin sketch, animation and education teams are rela-
tively focused in their goals. Could flash teams enable users
to pursue more ambitious goals that combine multiple do-
mains of expertise? Flash teams’ modularity promises to al-
low for organizations composed of many smaller teams.

We created a composite flash team that combined and repli-
cated all three other teams. Its goal was to create a prototype
platform for online education of long-tail skills such as pho-
tographing portraits, singing from the diaphragm and solving
the Tower of Hanoi puzzle (Figure 8).

The composite team used abstracted versions of existing
teams as single blocks, then tweaked their outputs and inputs.
The blocks of the composite team included:

• Homepage. Design homepage for the site. Input: napkin

sketch. Output: high-fi prototype (homepage) AND

design language. Roles: napkin sketch team. Target
time: 12hr. Can pipeline output (design language).

• Class page. Design the page to display a course. Input:
design language AND napkin sketch. Output: high-fi

prototype (course). Roles: napkin sketch team. Target
time: 12hr. Can pipeline input (design language).

• Course content. Write a script and quiz for the video. In-
put: lesson idea. Output: multimedia-edited script.
Roles: education team. Target time: 4hr.

• Course video. Produce the video for the lesson. Input:
multimedia-edited script. Output: animation. Roles:
animation team. Target time: 16hr.

This team was composed of nine flash teams: three napkin
sketch teams to create the three pages of the site, three educa-
tion teams to write the video scripts and quizzes, and three an-
imation teams to produce the videos. The first napkin sketch



Sound engineer

0h 5h 10h 15h 20h

Character design

Script Storyboard

Background design

Animation

Music Voiceover

Editing

Mix

Director

Scriptwriter Illustrator

Animator

script
storyboard

characters
backgrounds

audio track

24h

video trackscript idea animated video

Celebrate the 
work of Professor 
Terry Winograd, 
and his building a 
computer in …

Figure 6: The workflow for the animation flash team, which takes a high-level script outline as input and produces a short animated movie as output.

Figure 7: The animation team produced a short movie of a young Terry
Winograd building a computer in his garage.

team pipelined the site design language. The nine teams cre-
ated the platform and three interactive lessons in 19 hours
and 20 minutes of active work for a budget of $3,801.19 (Ta-
ble 1). Wall clock time was longer because not all teams be-
gan simultaneously. The talent for the singing video included
a professional singer from the Frankfurt Opera.

FIELD EXPERIMENT
This paper claims that flash teams enable expert crowd mem-
bers to come together and complete complex, interdependent
tasks in short periods of time. We conducted a controlled
experiment to compare flash teams to a self-managed team
approach where Foundry brings together the crowd experts
and lets them choose their own path. To minimize costs, we
focused on collecting data with a small number (3) of teams
in each condition, totaling 22 crowd experts.

Method
We recruited six napkin sketch design teams from oDesk by
requesting workers with expertise in UI design, UX research,
and web application development. Teams were assigned to ei-
ther the flash team or the control condition, resulting in a total
of three teams in each condition. We used the same job post-
ings on oDesk, recruitment process and task for the teams in

Figure 8: Course videos: singing from the diagram (top), portrait pho-
tography (left and bottom), and the Towers of Hanoi puzzle (right).

both conditions. To keep conditions comparable, the same set
of Foundry features was available, including a shared folder
via Google Drive and a chat window.

To recruit the experts, we conducted brief filtering interviews
and accepted applicants with high ratings. All workers were
paid their profile’s hourly wage. Members of each team had
a median of at least 250 working hours on oDesk and ratings
over 4.2 out of 5 stars (average 4.66/5). We randomized the
22 workers into teams and tasked them with creating a simple
party planning task manager from an input sketch that would
allow end users to add, edit and complete tasks. We asked
all teams to follow the user-centered design process and re-
quested that the final mobile web app be completed within 13
hours.

The main difference between the two conditions was the ex-
istence of the flash team workflow, whose presence indicated
a path to the team members, and allowed Foundry to sup-
port coordination via handoffs and notifications. For the flash
team condition, Foundry clearly specified each block and the
details associated with it, including the duration, team mem-
ber, DRI, input and output. This enabled Foundry’s support
for handoffs, task status, time until next task, and email noti-



Condition Roles Work Time
[hh:mm]

Wall Clock
[hh:mm]

Median
Wage

Total
Cost

Flash UI, UX1, UX2,
Dev 11:02 17:16 $18.00 $211.78

Flash UI, UX, Dev 13:52 24:10 $22.22 $364.80

Flash UI1, UI2, UX1,
UX2, Dev 14:13 23:51 $14.45 $215.58

Control UI, UX, Dev1,
Dev2 14:30 37:03 $25.00 $322.22

Control UI, UX, Dev 29:20 12:24 $16.67 $612.79
Control UI, UX, Dev 27:30 37:01 $12.00 $430.59

Table 2: Time and cost comparison for the flash and control teams. On
average, flash teams took half as many work hours than control teams.

fications. In contrast, for the control condition, the workflow
on Foundry consisted of one long task and did not provide any
details or information on how to complete it. This team was
allowed to self-manage and make their own plan to complete
the work in 13 hours.

Once each project started, we monitored the chat on Foundry
to make sure the team was working and answer any questions
that came up. We were equally responsive to the progress and
questions of the experimental and control teams. If a team
member left, we hired a replacement on oDesk immediately.
Though we told teams to complete in 13 hours, we allowed
teams as much time as they needed to complete the task.

Results
While all six of the teams completed the task and their ap-
plications were above-bar for quality, the flash teams took
roughly half as many work hours, followed the iterative de-
sign process more closely, and required less coordination.

By active work time, even the slowest flash team completed
the task faster than the fastest team in the control condition.
As shown in Table 2, the cumulative number of hours worked
for the flash teams ranged from 11hr2min to 14hr13min
(mean = 13hr2min) and had little variance across teams (SD
= 1hr45min). This small variance was consistent across all
blocks: the average standard deviation across the six blocks’
completion times was twelve minutes. In contrast, the cu-
mulative number of hours worked for control teams ranged
from 14hr30min to 29hr20min (mean = 23hr47min) and had
tremendous variation (SD = 8hr5min). A one-tailed permu-
tation test to compare the completion times in the two condi-
tions was significant (p = 0.05), confirming that flash teams
are significantly more efficient than self-managed teams of
crowd experts. Wall clock time did not always align with to-
tal work time, since workers would sleep or take breaks.

The control teams took longer than the flash teams to fin-
ish each role’s tasks (Table 3). The control teams spent
2.4x the time on UI Design, 1.9x the time on UX Research
and 1.4x the time on Development, resulting in an additional
10hr44min in cumulative work. In observing the teams, we
noted that team members would often invent work to do while
waiting for a collaborator to finish a task. This overeager
behavior, which we term busy waiting, particularly affected
team members such as UI Design who had fewer hours of
work that were officially required of them.

By following the sequence of modular tasks on Foundry, flash
teams followed the iterative design process more closely than

Role Flash Team [hh:mm] Control Team [hh:mm]
UI Design 2:59 (σ=0:55) 7:20 (σ=3:39)
UX Research 3:42 (σ=0:33) 7:07 (σ=2:52)
Development 6:21 (σ=0:46) 9:20 (σ=2:01)
Total 13:02 (σ=1:45) 23:47 (σ=8:05)

Table 3: Average work time by role for the flash and control teams. The
flash teams finished the tasks for each role faster than the control teams.

the control teams. In theory, since the self-managed teams
weren’t restricted to a precise workflow, they could have iter-
ated more times than the flash teams. However, these teams
produced fewer, if any, iterations on the mockups or devel-
oped web app. The control teams inefficiently decomposed
the tasks, combining separate tasks into a single task (such
as performing the heuristic evaluation and user testing on
the same mockup) and in the wrong sequence (for example,
the summative user testing was executed on the low-fidelity
mockup, and the software prototype was never evaluated).

The flash teams required less coordination than the control
teams and were more able to take advantage of on-demand
recruiting from the crowd. The control teams’ success was
largely dependent on individuals’ project management skills.
For example, one of the control teams did not coordinate
at all and found the experience extremely frustrating. An-
other control team adopted a fully interdependent workflow
in which the experts treated Foundry as a collaborative war
room environment [35] and established social and informa-
tional awareness to support their coordination efforts [37];
they all worked together to produce a high-quality outcome at
great financial cost. When workers disappeared due to other
commitments, flash teams were robust and could reach out
to the crowd for a replacement quickly. In contrast, when
members of one of the control teams quit (in multiple occur-
rences, they grew too frustrated with the experience and left),
the entire team’s performance suffered. When one of the de-
velopers was replaced, for example, the new developer had to
start from scratch and was forced to work on his own since
the other team members had disappeared by that point.

DISCUSSION AND FUTURE WORK
Flash teams enable users to gather and coordinate paid ex-
perts from the crowd to complete complex and interdepen-
dent tasks quickly and reliably. Rather than try to recreate the
strengths of in-person expert teams, this approach suggests a
“beyond being there” vision of expert crowd work [20]. In
particular, flash teams afford dynamic recruitment and co-
ordination of on-demand expertise that is extremely difficult
in offline scenarios. Problems that might have plagued such
teams, such as last minute dropouts, are relatively straight-
forward to solve in crowd work because another person can
join on demand. Furthermore, flash teams can take advantage
of timezone differences that could potentially allow them to
carry on uninterruptedly for days or weeks.

Flash teams move beyond the typical conception of crowd-
sourcing as collecting multiple viewpoints on a single ques-
tion. Rather than treating the crowd as redundant resources
that cannot be fully trusted, flash teams view the crowd as
an elastic, on-demand set of diverse and high-quality par-
ticipants. The result is that flash teams often aim to gather



experts with different expertise rather than redundant view-
points. Even more ambitiously, flash teams can be com-
bined to create new types of organizations with completely
fluid boundaries — organizations that are composed of many
smaller flash teams, each of which are spun up on demand,
work in parallel, and disperse when complete.

Flash teams also have several important limits, which we in-
tend to address in future work. While our controlled evalua-
tion of flash teams was limited to napkin sketch design teams,
in the future we plan to test other types of flash teams to better
understand the types of tasks flash teams are well suited for.
Furthermore, similar to traditional collocated and distributed
teams, flash teams experience difficulties related to coordina-
tion and conflict. During informal interviews after the tasks
were completed, flash team members indicated that they en-
joyed working as a team, but wanted the opportunity to build
more camaraderie — some members would finish their task
and then just leave. One approach to improving team motiva-
tion would be to allow workers to find trusted colleagues and
join into clusters that can be hired together.

It will be important for follow-on evaluations to compare
flash teams to the same teams when led by project managers.
Our current objective was to test flash teams against self-
managing teams, which are the equally scalable alternative
and therefore theoretically relevant for our paper. Research in
organizational behavior has shown that self-managing teams
are prevalent and effective. However, it is likely that many
teams in future environments may want to consider human
managers, which is a worthwhile tradeoff to understand.

Given that teams do not always go according to plan, future
work should also explore issues related to runtime course cor-
rection and dispute resolution. When this happened in prac-
tice, the flash team tended to work within the existing task
structure to resolve the issue. However, Foundry could pro-
vide more built-in support for veering off the path if the user
allows it, or even algorithmic guides that allow for branching
or looping. In addition, flash teams have disagreements like
any other team. In one case, miscommunication and disagree-
ment about artistic direction provoked a heated argument be-
tween experts on the animation team, causing the director to
fire the illustrator and find a replacement.

Currently, the recruitment of each flash team requires a vet-
ting process on oDesk to pre-clear a set of workers who are
high-quality and available at the desired time. However, plat-
forms such as oDesk are moving toward more automated hir-
ing procedures. We envision a future where a user could re-
quest an expert for a given wage and quality, the platform me-
diates to provide one either algorithmically or through crowd-
sourcing consultants. In the meantime, Foundry could build
up lists of trusted experts for each flash team structure in or-
der to provide a quick and trusted recruiting experience.

In the future, the crowd scale of flash teams could enable end
users to make more data-driven decisions about collaboration
and work, and empower the scientific study of teams. As
the same flash team gets run multiple times, Foundry could
display estimates for how long tasks tend to take in practice.

Likewise, Foundry raises the opportunity to randomly perturb
team structures at scale to run field experiments and A/B test
collaboration structures.

CONCLUSION
This paper offers a vision of how computation and crowd-
sourcing can shape the future of creative, engineering, and
analytical work. We introduce flash teams, which are linked
sequences of modular goals for crowd experts that can be rep-
resented and interpreted by interactive systems. Flash teams
benefit from computational authoring: end users can com-
bine modular team elements to create larger organizations and
generate teams on request through automated path search.
Flash teams also benefit from computational management:
they can grow and shrink on demand via elastic recruitment
and pipeline results to accelerate completion times. Offline
organizations can embed similar techniques into traditional
teams, but flash teams open the door to doing so at a much
larger scale than previously.

Flash teams offer an opportunity to shift the paid crowdsourc-
ing narrative in both research and practice. Rather than aim-
ing for redundant, independent judgments, flash teams envi-
sion a future of crowdsourcing with dynamic collaborations
of diverse and interdependent participants. This future would
enable traditional organizations to become far more reactive:
a few end users with an idea, for example, could temporarily
augment their team on demand as the need for certain skills
and expertise becomes apparent. Ultimately, we aim to enable
experts and amateurs alike to contribute skills they enjoy, on
a set of tasks that they find interesting, and at a scale we are
just beginning to glimpse.
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