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ABSTRACT 
Computer vision and human-powered services can provide blind 
people access to visual information in the world around them, but 
their efficacy is dependent on high-quality photo inputs. Blind 
people often have difficulty capturing the information necessary 
for these applications to work because they cannot see what they 
are taking a picture of. In this paper, we present Scan Search, a 
mobile application that offers a new way for blind people to take 
high-quality photos to support recognition tasks. To support real-
time scanning of objects, we developed a key frame extraction 
algorithm that automatically retrieves high-quality frames from 
continuous camera video stream of mobile phones. Those key 
frames are streamed to a cloud-based recognition engine that 
identifies the most significant object inside the picture. This way, 
blind users can scan for objects of interest and hear potential 
results in real time. We also present a study exploring the 
tradeoffs in how many photos are sent, and conduct a user study 
with 8 blind participants that compares Scan Search with a 
standard photo-snapping interface. Our results show that Scan 
Search allows users to capture objects of interest more efficiently 
and is preferred by users to the standard interface.   

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User Interfaces; 
K.4.2 [Social Issues]: Assistive technologies for persons with 
disabilities 

General Terms 
Human Factors, Design, Experimentation. 

Keywords 
Real time object scanning; Accessibility; Blind user; Mobile. 

1. INTRODUCTION 
Many everyday tasks require object identification, yet many 
objects are indistinguishable without visual information. For 
example, many food products have the same size and packaging, 
and so the only way to tell them apart is by looking at the labels. 
A quick and accurate visual scan by a sighted person can help 
blind people with the minor problems and finish more daily tasks 

independently. Blind people often have workarounds that can 
render individual problems into mere nuisance, but, collectively, 
small problems can lead to decreased independence [7]. 

Many applications from both research and industry have been 
designed to help blind people recognize objects around them, 
either by applying computer vision [10, 11, 16] or human 
computation [5, 7, 26]. Most of these applications have a photo-
snapping interface – a button in the interface acting as a camera 
shutter which triggers photo taking and subsequently object 
recognition events. When the input photo has good quality and 
abundant information, these applications can work well to provide 
the user a good recognition result. But the photo-taking interface 
on current mobile phones is not friendly to blind users, as very 
few smart phones have acoustic feedback in the photo-taking 
interface. This fact often leads to difficulty for blind people to 
correctly frame the camera and take a picture with the target 
object at a good position. Even when the camera is perfectly 
framed and the object distance is good that most area of the object 
facing the camera is inside the frame and in focus, there may not 
be enough information inside the photo to identify an object, for 
example, the camera is facing the wrong side of a food product 
and there are only advertisements or nutrition facts in the photo. 

Difficulties in blind photography can make assistive services less 
beneficial to blind people than they could be. Workers powering 
systems like VizWiz [7] can suggest camera positioning guidance 
to help the blind user to take a better photo for the next run, but it 
can take several runs (and several minutes) to recognize an object, 
resulting a much longer time to complete individual object 
identification task than desired [4]. Services powered by computer 
vision usually lack of this feature in large part due to the difficulty 
in constructing automatic technologies that can do this well. 

In this paper we introduce Scan Search, a project aiming at 
enabling real time object scanning for blind people to help them 
quickly and accurately identify everyday objects. Blind people 
use Scan Search on their existing camera phones. The application 
automatically extracts good quality frames from the camera feed 
and sends those frames to the IQ Engines’ web service for 
identification. IQ Engines is a cloud-based visual search engine 
with a large public dataset containing several million images of 
packaged goods, print media, brand logos, etc. [6] Unlike most 
current assistive object identification applications, Scan Search 
does not have a photo taking button. Blind users open the 
application, put the object they want identified in front of the 
camera and start scanning from different angles and distances for 
real-time identification. Scan Search intelligently decides which 
frames to process to conserve computational resources, as 
opposed to other applications that fully process each frame. It 
leverages a cloud-based visual search engine to address general 
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scenarios, as opposed to only OCR [18], currency recognition [10] 
or bar code scanning [11] offered by other applications. 

Since Scan Search works in a real-time scanning fashion, it can 
save time for blind users who may otherwise need to figure out 
the right position of camera in order to take a single high-quality 
photo and then wait for feedback. According to our user study, 
Scan Search allows blind user to identify a food product with a 
success rate of 91.7% as opposed to a photo-snapping interface 
with a success rate of only 62.5% with the same image 
recognition mechanism. 

The Scan Search application is efficient on computational and 
networking resources on the iPhone, as the visual search engine of 
IQ Engines [6] doesn’t need high-resolution input images. In our 
experiments the required bandwidth was below 50 KB/s. 
Therefore it can be deployed on a large range of smart phones as 
long as they have a camera with reasonable resolution. Given the 
prevalence of smartphones and their better accessibility over 
feature phones [2], Scan Search can potentially benefit a large 
population with visual impairment. 

The Contributions of this paper include: (i) an efficient algorithm 
that automatically extracts good quality, information-rich frames 
from continuous camera video stream; (ii) a mobile application, 
Scan Search, that enables blind users to scan everyday objects for 
real-time identification result; (iii) and, a usability study that 
shows Scan Search is preferred by blind users over standard 
photo-snapping interfaces for its effectiveness and efficiency in 
taking good photos and identifying objects. 

2. RELATED WORK 
2.1 Accessibility on Mobile Phones  
For the most of the past few decades, mainstream cellphones have 
been inaccessible to blind people. Blind people had to rely on 
separate screen reading software like Mobile Speak Pocket (MSP) 
[13] to have best access to the phones. Such software has been 
limited due to its high price (several hundreds of dollars in 
addition to the price of a smart phone). 
In the past few years, many smart phone manufacturers have 
started to develop their own screen reading software that allows 
blind people to use their phones and either include the software 
into the operating system or ship it for free. For example, Apple’s 
iPhone (available on 3GS and later models) now has VoiceOver1, 
Android-powered (starting from 4.0) smartphones now support 
“Eye-Free”2 multi-touch interactions, and Nokia has also released 
a free screen reader in their online application store since October, 
20113. Touchscreen devices like iPhone were once thought to be 
inaccessible to blind users, but well-designed, multi-touch 
interfaces leverage the spatial layout of the screen and can even 
be preferred by blind people [8]. The iPhone has proven 
particularly popular among blind users, which is why we 
developed the first version of Scan Search application on the iOS. 
With the accessibility of smart phone platforms improving, not 
only existing applications with graphic interfaces such as web 
browsers are becoming more accessible to blind people, there are 
                                                                 
1  http://www.apple.com/accessibility/voiceover. 
2  https://code.google.com/p/eyes-free/. 
3  http://conversations.nokia.com/2011/10/27/nokia-rolls-out-new-

screen-reader/. 

also more and more applications designed for blind users now. 
Including but not limited to GPS navigation and way-finding 
applications, OCR readers, currency/color recognizers, and also 
many object identification applications. 

2.2 Object Identification for Blind People 
Object identification is an important and frequent task in people’s 
daily lives, and often acts as a critical first step of completing 
more complicated tasks. Although many objects can be identified 
without visual information, for example, with tactual features, 
many objects are only differentiable by visual characteristics, 
such as two cans of the same size and tactual feels and different 
labels. Although blind people often have work-arounds for those 
small problems or can seek help from sighted persons, 
collectively those small problems can lead to decreased 
independence and less efficiency, sometimes even big frustrations. 
Prior study shows that identification is the most common visual 
challenge for which blind people seek help from access 
technology (41% of four categories of questions) [4].  
Access technology helps blind people with object identification 
through two kinds of approaches, either computer vision powered 
automatic services or human-powered services. Computer vision 
powered services generally have faster response time and better 
availability but are limited in scope and error-prone [7], while 
human-powered services are more flexible and economical. All 
the services require a certain level of input photo quality to 
provide satisfactory results. 

2.2.1 Computer Vision Powered Services 
On mobile phones, there are many accessible object identification 
applications, which employ different computer vision algorithms 
to identify objects inside the input photos captured by blind users 
in real time. 
Some of the applications run all object identification tasks on the 
mobile phones with a local dataset. They are faster and don’t 
require network connection, but only work in a specific scope 
because computational and storage resources on mobile phones 
are not comparable to those on desktop or web servers. For 
instance, the LookTel Money Reader [10] can identify currency 

Figure 1. 3-step IQ Engines visual search flow, to 
achieve real time user experience, Scan Search only 

uses the computer vision server now but it is scalable. 
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denominations instantly (less than 0.5 second) but only work with 
currency of five countries.  
Another kind of object identification applications combines local 
image search with web visual search engines. Since web servers 
can store much bigger datasets and run heavy computational tasks 
much faster than mobile phones, they can work with a wide range 
of objects and still respond in real time. For example, Omoby [16] 
passes locally unrecognized photos to their own visual search 
engines, which have millions of trained images for a further 
match. Given a good network connection, they can return remote 
search results in less than 2 seconds. 
Although often helpful in blind people’s daily lives, computer 
vision services often fail or required a long time for blind users to 
identify an object because of low recognition rates. Because blind 
people have no access to visual information, it can be difficult for 
them to frame a good photo with important optical features inside, 
and those applications can’t provide any camera framing guidance. 
Most of the time, a blind user will need to try multiple times 
before s/he gets the identification result if s/he succeeds.  

2.2.2 Human-Powered Services 
Since human-powered services like VizWiz [7] use real human to 
do visual scan on the input photos, they can work with a wider 
range of objects and have lower requirement of image quality. But 
the main advantage of those services is that they provide camera 
positioning guidance to blind users in order to answer the blind 
users’ questions, in this context, identifying objects. 
Although human computation cannot act as fast as computer 
algorithms in that it requires time to recruit online workers and 
wait for them to complete the tasks, with well-designed 
infrastructure they can still provide near real-time responses. For 
instance, VizWiz can answer a question in less than 30 seconds if 
a steady pool of workers is maintained [7]. 
In practice, there are several factors affecting performance of 
human-powered services, such as lower availability of online 
workers during some time periods in a day and malicious workers. 
And even with camera guidance, it may take several runs for a 
blind user to take a photo with necessary information inside. 
Aggregating time of sending photos and feedbacks back and forth 
can be longer than desired and sometimes frustrating.  

2.3 Blind Photography 
A number of published articles [1, 3, 20, 21, 24] have shown that 
blind people take photos for multiple reasons, including sending 
to remote sighted people for feedback and for general object 
recognition [3]. Despite this, most current camera interfaces are 
only marginally accessible, which leads to poor-quality photos 
that are blurry, tilted or improperly framed. For instance, more 
than 17% of the questions sent to VizWiz could not be answered 
because the photo quality was too poor [4]. 
There have been many efforts [3, 14, 15, 19, 22, 25] to assist 
blind people better using the inaccessible cameras and also some 
technology [9, 28] potentially can be used to facilitate this task. 
For instance, the system developed by M. Vázquez, et al. [15] to 
help visually impaired users aim a camera can effectively assist 
blind users to frame a better photo by applying optical region of 
interest algorithm to suggest better framing for blind users. 
Despite this breadth of work, blind people still take lower quality 
photos than do sighted people [15], indicating the need for more 
research in this area. Even high-quality photos taken by blind 
people can be insufficient for many uses – for instance, a high-
quality photo of the back of a box may not show its label. Scan 
Search helps to solve these problems by giving blind users direct 
feedback on what is shown in the camera. 

2.4 The IQ Engines Visual Search Engine 
In our Scan Search system, we used the IQ Engines cloud-based 
image recognition service, which is built on top of both a public 
dataset containing millions of images and a private dataset created 
by each user. Searching works best for flat objects and packaged 
goods including but not limited to beer, wine labels, logos, print 
ads, books, CD/DVDs, posters and artwork. 

The IQ Engine service also has options to process local visual 
search queries on iOS and Android phones before remote search 
engine queries are triggered and to pass unrecognized images to 
human-powered service for a guaranteed response. In order to 
maintain a controlled experiment condition to evaluate our real-
time scanning interface, those two options are not enabled in our 
Scan Search application. With local search and human-powered 
service disabled, a single visual query takes less than 1 second to 
finish given a good network connection and since it only accepts 

Figure 2. The Scan Search application reads frames from the camera buffer, extracts key frames from the stream, sends key 
frames to the cloud-based visual search engines and presents recognition results in the interface. 

 
 

 
 



photos with resolution ranging from 200x200 to 800x800 and it is 
also network efficient as mentioned before. 

IQ Engines handles a visual search query by first matching the 
input photo (a frame chosen by Scan Search) against a local 
image dataset on the mobile phone (if enabled) (Figure 1). It then 
sends the photo to a cloud-based server for remote matching 
against images in both private and public datasets. If there is still 
no matching result it will then be forward to human-powered 
service that takes less than 10 seconds to respond (if enabled) or 
return a “No Match” result. 

3. SCAN SEARCH 
Scan Search is an iPhone application designed for use with the 
VoiceOver available on the iPhone 3GS and later models. The 
interaction to identify objects with real-time scanning is simple 
and intuitive, and fully accessible for blind users. 

3.1 System Description 
As shown in Figure 2, the Scan Search system has two modules 
that work together to facilitate real time object identification 
while scanning objects. The first one is a key frame extraction 
module that will be described in detail in the next section. It runs 
on continuous camera video stream to retrieve high quality frames. 
The quality of a frame is defined as the stableness of the camera 
at the time the frame is recorded and the richness of visual 
characteristic features (indicated by the green points on the 
interface in Figure 2). The second one is an object recognition 
module, which sends key frames to the visual search engine for 
recognition results and subsequently presents the returned results 
with both visual and audio feedbacks. All matching results are 
then stored in an accessible history table in the order of picture 
taking time for blind users to further review the objects identified 
and differentiate pictures and corresponded results. 
When users start Scan Search, it starts to read frames from the 
buffer of the iPhone camera and process each frame to determine 
whether it is good enough to be considered a key frame. If a 
frame passes the validation process it is immediately resized and 
encoded as a 640x480 JPG file and sent to the IQ Engines visual 
search engine which is described in detail in the previous section. 
Visual and audio hints are available at the time of key frame 
sending events. Then the application continues with another 
incoming frame without waiting for the asynchronous recognition 
query to finish. Once a recognition result arrives at the phone, the 
application alerts the user with both visual and audio feedbacks. If 
the result is a positive match with one of the objects in the dataset 
then the match is stored in the history table for further review. 

3.2 Key Frame Extraction 
3.2.1 Design of Algorithm 
Most mainstream phones now have a camera that can capture 
frames at a rate of 30 fps. It is impractical to send all frames in the 
camera buffer to a cloud-based visual search engine because of 
network bandwidth limitation. Even if possible, it is inefficient 
because most buffered frames are blurry or improperly framed 
images captured by the camera when the user is adjusting phone 
position. Sending the whole buffer would result in a huge waste of 
both network and computational resources. In addition, for single 
object identification, the visual search engine actually needs only 
one good image with abundant optical characteristics. To 
efficiently and accurately retrieve such good images from 

continuous video, we designed a lightweight optical algorithm 
that runs on phones to enable real time key frame extraction.  
The heuristic of extracting a high quality key frame is the same as 
taking a photo with a handheld camera. We want the camera to be 
steady and well-focused at the actual photo-taking time; we also 
want as much visual information as possible to be included in the 
frame; and we don’t want to take too many pictures for the same 
scene which is inefficient and a waste of further processing 
resources. And since the computational capacity is limited on 
mobile platforms, we cannot perform heavy calculations. Bearing 
those principles in mind, we leverage the lightweight Lucas–
Kanade optical flow method [12] to efficiently track feature 
points.  The amount of feature points in each frame is used as an 
indicator of optical information richness of that correspondent 
frame and the estimated movements between a specific frame and 
its previous one serves as an indicator of stableness of the camera.  
With the Lucas-Kanade algorithm benchmarking stableness of the 
camera and optical information richness of frames, as shown in 
Figure 3, our algorithm runs continuously on video stream and 
break the stream into segments, each segment represents a scene 
whose optical information is significantly different from its 
neighbors’. In each segment, at most one good frame is extracted 
as the key frame in each scene in order to ensure efficiency. 

 

Figure 3. Flow chart of the key frame extraction 
algorithm. 

 



  

3.2.2 Implementation 
As a popular optical flow-tracking algorithm, the Lucas-Kanade 
method is included in the OpenCV [17] library, which is available 
on several platforms including iOS (in 2.4 and later versions). It 
has been widely used since firstly proposed in 1981 [12]. 
Nowadays most mainstream smart phones have enough 
computational power to apply the algorithm in real time, for 
instance the 800MHz A5 processor on the iPhone 4S model can 
process 240x320 grayscale frames at a rate of 15-20 fps. 
Our implementation of the key frame extraction algorithm is in C 
and can be compiled with OpenCV library on many platforms, 
including iOS, Android and Linux, which means it can be easily 
ported and embedded into different applications. In this paper we 
evaluate and optimize the performance of our algorithm on iOS in 
order to better serve blind users of Scan Search. However, we 
have also successfully tested the algorithm on Android and we 
believe the evaluation and optimization discussed in the next 
section are also applicable to the other platforms. 

3.3 Algorithm Evaluation and Optimization 
The performance of our key frame extraction algorithm depends 
both on the device hardware and on the parameter settings, which 
is why we want to evaluate and optimize our algorithm 
implementation before putting it into the Scan Search application. 
As illustrated in Figure 3, there are three parameters/thresholds in 
our key frame extraction algorithm. They are: 
a. Movement threshold: The threshold of a point’s movement 
between two consecutive frames, any point moved a distance 
smaller than this threshold will be considered a stationary point 
and kept in subsequent computation, otherwise discarded. In order 
to make the design compatible with different camera resolutions, 
movement threshold is defined as a percentage of either width or 
height of the frame, whichever is smaller. For instance, if the 
frame size is 640x480, a movement threshold of 1% means a 
stationary point can move at most (480*1%)-1 = 3 pixels.  

b. Initialization threshold: The threshold of the percentage of 
left stationary points in a specific frame compared to the amount 
of points in the first frame in the current segment of the video 
stream. Since in the same segment points can only be discarded 
because of significant movements, this percentage will drop from 
100% (the first frame) gradually. When the percentage becomes 
lower than the threshold, we consider a new scene is being 
captured and thus switch to a fresh segment. 

c. Stableness threshold: The threshold of the number of stable 
frames needed before a frame is considered to be the key frame of 
this segment. A specific frame is considered stable if and only if 
in this frame no points are discarded because of significant 
movement comparing to the previous frame, when a frame is 
categorized as stable the stable frame counter will increment by 1. 
Once the counter reaches this threshold, the current stable frame 
will be outputted as the key frame of this segment.  

In order to obtain an ideal performance of our algorithm, we 
analyzed how each parameter affects the performance. Unlike the 
other two parameters, the stableness threshold largely depends on 
the processor speed. Generally, the faster the device running the 
algorithm, the larger the best-fit stableness threshold is. For 
instance, most phone cameras can capture a clear and well-
focused image after being held stably for 0.5-1 second, if the a 

frame takes 0.1 seconds to process, a stable frame counter of 5-10 
indicates a good time to extract the key frame, while a processing 
speed of 20 fps corresponds to a stableness threshold of 
approximately 10-20. Thus this parameter should be set according 
to processor specifications, after testing with different iPhone 
models, we have found the best empirical stableness parameters 
for the iPhone 4, 4GS and 5 as listed in Table 1.   

Table 1. Empirical stableness threshold settings 

Model Processor [27] Threshold 

iPhone 4 A4 (clock speed unrevealed) 10 

iPhone 4S A5, 800 MHz 15 

iPhone 5 A6, 1.3 GHz 20 
In order to make the algorithm portable to other mobile platforms 
without empirical threshold settings, we have also implemented a 
dynamic stableness threshold adjusting mechanism, which 
automatically sets the threshold according to the following 
formula formed with the logic described above. 

 
Where Ts is the stableness threshold, ti is the time used to process 
i-th frame and n is the total number of frames processed so far. 
The movement and initialization thresholds are more complicated, 
because they are far less dependent on hardware performance and 
more directly affect the quality and quantity of key frames 
extracted from the same video stream.  

When adjusting the movement threshold we face a tradeoff 
between quality of key frames and number of redundant key 
frames with similar information. As shown in Figure 2, lower 
movement threshold means fewer points can be considered 
stationary thus it is harder for a frame to pass the stableness test, 
leading to better quality of key frames. However, it also means 
that in a certain stream segment, stationary points will drop below 
the initialization threshold faster, leading to more segments and 
subsequently more key frames extracted from the same stream. 

For initialization threshold, there is also a tradeoff which is 
between the thoroughness of visual information scanning and 
amount of redundant key frames. The logic in Figure 2 shows 
lower initialization threshold leads to smaller difference in optical 
characteristics between two consecutive segments, leading to 
more thorough information retrieval and also more key frames 
extracted from the same stream. 

To better understand the tradeoffs related to the two parameters, 
we did two experiments to evaluate the performance of our 
algorithm with different parameters and optimized the algorithm. 

3.3.1 Experiment Designs 
The two experiments differed in the dataset used by the visual 
search engine. The first one was conducted with a controlled 
private dataset with only trained images of objects used in the 
experiment, while the second was conducted with the very large 
public dataset to better evaluate expected performance in practice. 

For the first experiment, the subject objects were three cans of 
food with the same size and tactual feel but different labels. We 
first took 13 pictures of each object from different angles and 
distances and trained them in a private dataset for image matching.  



We then recorded an approximately 20-second video of each 
object, which simulated a scanning of the object by moving the 
camera around the object and zooming in/out from different 
angles. A script was used to extract key frames from the video 
with different parameter settings and send the images extracted to 
the visual search engines to match against entries in the private 
dataset for object identification results. 

For the second experiment, the subject object was a single canned 
food. We used the same script to process a 30-second scanning 
video of the object to extract key frames and match them with 
trained images in the large-scale public dataset. 

To measure the performance of our algorithm with different 
parameters, each visual query result was recorded. Movement 
threshold ranged from 1% to 10% with an interval of 1% and 
initialization threshold was chosen from 1%, 5%, 10 and 20%. 

3.3.2 Results and Discussion 
For each parameter setting, we counted the number of key frames 
extracted and then calculated the percentage of frames inside 
which objects were successfully identified, for simplicity the 
percentage is referred as identification rate later. Higher 
percentage of successfully identified frames is regarded as an 
indicator of better quality of the key frames extracted in the 
experiment while more extracted key frames is a signal of both 
more thorough information retrieval and more redundancy. The 
relationship between the parameters and those two performance 
measurements were then analyzed as below. 

As shown in Figure 4, the identification rate varies largely for 
different objects in the first experiment. This is because some 
objects have more distinguishable visual features, such as logos 
with distinct edges. However, overall linear regression on the 
aggregated results shows that movement threshold significantly 
predicted identification rate (b = -1.11, t(37) = -4.90, p < .001), on 
the other hand, initialization threshold didn’t, together they 
explained a significant proportion of variance in identification 
rates (R2 = .39, F(2, 37) = 12.03, p <. 001). The finding of 
negative significant coefficient of movement threshold conforms 
to our theory of the effects of each parameter which is described 
in the previous section.  Furthermore, because the private dataset 
is small and controlled, most key frames were correctly identified 
by the engine (average identification rate is 76.23%, σ = 5.07%). 

When looking at the amount of key frames extracted with each 
parameter setting, we found our theory of a negative correlation 
between numbers of key frames and movement threshold correct, 
as well as a positive correlation with initialization threshold. 
Linear regression on the aggregated results was used to verify our 

findings. Specifically, as shown in Figure 5, higher movement 
threshold significantly predicted fewer key frames (b = -204.85, 
t(37) = -7.15, p < .001), while higher initialization threshold 
significantly predicted more key frames (b = 40.59, t(37) = 3.51, 
p < .01), together they explained a significant proportion of 
variance in number of key frames (R2 = .63, F(2, 37) = 31.705, p 
<. 001). Again, for individual object the result varies because of 
differences in visual features and video taking positions but the 
same trend can still be seen in each individual result. On average, 
30.45 frames were extracted from three videos together (σ = 8.25), 
and the total length of the three videos are 60 seconds, resulting to 
a frame extracting speed of approximately 1 frame every 2 
seconds, given the file size of a 640x480 jpg is at most 100 KB, 
the maximum network uploading bandwidth needed is 50 KB/s 
which can be supported by most wireless connections, e.g. EDGE.  

From Figure 5, we also noticed that although movement threshold 
is negatively correlated with number of key frames, the peaks of 
frame number almost always appear at 2% movement threshold. 
Our explanation for the bump between 1% and 2% movement 
threshold is that in the pre-processing step, each frame is 
converted to a 160x240 grayscale image to alleviate burden on the 
tracking algorithm. Thus 1% movement threshold means a 
stationary point can move at most (160*1%) - 1 = 0 pixel, which 
essentially means it cannot move at all. But camera shake is a 
common problem of handheld photographs especially in low light 
situations, e.g., inside buildings [23], therefore 1% is too strict 
that in most segments of the video stream a key frame cannot be 
extracted, which counterbalanced the effects of more segments.  

The second experiment conducted with the large-scale public 
dataset gave us more insight into the expected performance of our 
algorithm in practice. As shown in Figure 6, we can see the same 

Figure 4. Identification rates in controlled dataset with 
different movement and initialization thresholds. 

Figure 5. Number of key frames extracted with different 
movement and initialization thresholds, length of a bar is 
the total number of key frames, red means unidentified 

frames, otherwise identified frames. 
 



correlation between movement/initialization threshold and 
identification rate as well as number of key frames.  

 
Data analysis corroborated our observation, as a linear regression 
showed that movement threshold significantly predicted 
identification rates (b = -0.94, t(37) = -2.96, p < .01) and number 
of key frames (b = -126.36, t(37) = -6.62, p < .001), on the other 
hand, initialization threshold significantly predicted only number 
of key frames (b = 32.72, t(37) = 4.24, p < .01). Together they 
explained a significant proportion of variance in both 
identification rates (R2 = .24, F(2, 37) = 5.77, p <. 01) and number 
of key frames(R2 = .63, F(2, 37) = 30.89, p <. 001). 

We confirmed this on public dataset our theory of parameter 
settings is still valid. We also successfully identified the subject 
object in the video with each and every parameter setting. But we 
are more interested in the differences between private to public 
datasets. The most obvious change is that identification rate 
dropped from >70% to <45% (µ = 27.66%, σ = 6.35%) because 
the public dataset does not have as many trained images of the 
subject objects as private dataset. We also observed that some 
queries returned ambiguous or false positive results, e.g., “Canned 
food” while the ground truth is “Progresso Vegetable Classics”.  

Bearing the reality issues with using the large-scale dataset and 
lack of access to visual information of blind users in mind, we 
decide to choose a parameter setting that allows some redundancy 
in change of more thorough scanning in order to enable blind 
users to identify objects more easily with the ability to filter false 
positive results. But we do not want to sacrifice key frame quality 
too much, therefore we defined movement threshold as 2% and 
initialization threshold as 10% in Scan Search application. 

4. USER STUDY 
To explore the effectiveness of Scan Search in assisting blind 
users to identify objects in their everyday lives and to compare 
the scanning interface with standard photo-snapping interface, we 
conducted a study with 8 blind people (6 male and 2 female). The 
age of our participants ranged from 21 to 52 (µ = 30.88). The 
study was conducted remotely from the blind participants’ homes 
using their own iPhones. The phones used were iPhone 4 (1), 
iPhone 4S (4) and iPhone 5 (3). Participants were paid $5 each, 
consented online, and not otherwise affiliated with this project. 

As a control condition, we developed another object identification 
application without the key frame extraction algorithm. In the 
control application, users have to push a button to take pictures 
like the way they would use Omoby [16] or Taptapsee [26]. 
Before the study, the participants were briefed on how both 
applications worked, and used each application to identify an 
object shown in an image opened in their web browser. During 
the study, they were asked to find and then identify three 
differently shaped everyday objects: (i) a bottle of water/light 
drink/beer, (ii) a can of food, and (iii) a frozen dinner or a carton 
of milk. All of the objects used in the trials were first confirmed 
to exist in the public dataset so that failed trials would be due to 
poor quality of pictures sent to the visual search engine and not 
because of a lack of appropriate trained images. The participants 
were encouraged to take photos from different distances, angles 
and camera orientations and did not receive instructions from us. 

Participants used both Scan Search and the control application to 
identify objects in each of the 3 categories (6 trials per 
participant). To alleviate short-term memory of object positioning, 
the order of tasks and applications were randomized. Each object 
identification task was limited to 5 minutes. Tasks that exceeded 
the time limit were considered failed and discontinued. All task 
completion times were recorded. A completion time was defined 
as the interval between the time a user starts trying to identify an 
object and the time s/he receives a satisfactory result (defined as 
either being accurate or containing enough information for 
her/him to use another service to identify the object). For example, 
an accurate description of the product or a bar code number. 

5. RESULTS AND DISCUSSION 
All participants completed the experiments with network 
connections ranging from slow EDGE to high speed Wi-Fi and on 
average each image matching on the cloud took less than 1 second. 
11 of 48 total trials failed, and most (9) of the failed trials 
occurred in the control condition (standard photo-snapping 
interface). One of the failed cases with control condition was 
found when reviewing trial images that a false positive was 
accepted by the participant, others are all due to time out. Thus 
it’s easier for blind users to identify objects with Scan Search than 
other photo-snapping applications. The success rate of scanning 
interface (91.67%) was significantly higher than that of photo-
snapping interface (62.5%), t(46) = 6.29, p = .016. The average 
time taken per identification task with Scan Search was 73.2s as 
compared to 126.4s with the control, which is 42% less. The 
difference was not detectably significant, in part because of large 
variation in completion time. We found that some trials succeeded 
quickly because of a lucky starting position of the camera that 
captured a distinct area of the target object with less than three 
photos, for instance, the UPC label. In these cases, both 
applications worked just as well because no search was required. 
Thus, we did further analysis on only those trials that took more 

Figure 6. Results of the experiment with public dataset. 
 



than 5s to complete. All of these trials produced more than 3 
pictures with the last one correctly identified the object, 
suggesting a visual search which is challenging for blind people 
was actually performed. For those trials Scan Search needed 
24.43s each in average while photo-snapping interface took 
75.57s, which means a blind user could successfully locate the 
visual information needed to identify objects faster with Scan 
Search. The difference was significant (t(12) = 5.99, p = .031). 

The quality of photos taken by the participants were also better 
when using our scanning interface because the key frames 
extracted were guaranteed by the application to be non-blurry and 
well-focused. It is also one reason that blind users succeeded in 
more trials with the scanning interface even though the average 
number of photos taken in each trial were almost the same with 
scanning interface (11.4) and photo-snapping interface (14.1), 
t(46) = 0.41, p = .523. It suggests that our algorithm is no more 
likely to overwhelm users with too many pictures. Another 
observation worth noting is that blind users have largely different 
levels of camera using skill. Therefore we believe audible guided 
exploration of visual scene can be very helpful, especially for 
those not familiar with photography. 

At the end of the study, participants were asked to take a short 
survey about their preferences between scanning and standard 
photo-snapping interfaces and given general feedback on the two 
applications. 7 participants said they “strongly prefer” and 1 said 
“prefer” scanning interface over photo-snapping interface, and 6 
participants would like to continue using Scan Search in their 
daily lives because of “fast and good results” while the other 2 
said they “possibly”, one of the participants was “surprised that it 
can recognize objects with random scanning”. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we have contributed an algorithm, which can extract 
high-quality and visually-rich frames from continuous camera 
video, experiments that evaluate and optimize the algorithm, an 
accessible real-time scanning application with which blind people 
can identify everyday objects around them and usability studies 
that show our approach works better than the current standard. 
Most camera interfaces lack of accessibility for blind people even 
though many accessible mobile applications are picture-based. 
Scan Search improves blind users’ experience in multiple areas. 

More designs and studies are presently being conducted on 
combing the key frame extraction algorithm with other 
technology, such as crowdsourcing and real time camera framing 
assistance, to create or improve more accessible applications and 
address the image dataset scalability. Interface improvements of 
Scan Search are also ongoing to enable end-users to train datasets 
on both phone and cloud in order to customize visual searches. 
For the next stage, we plan to continue our research on both 
application and algorithm levels. Specifically, we’d like to refine 
Scan Search based on feedback and then distribute it on the public 
market to better understand its potential real-world benefits. On 
the other hand, we’ll improve our algorithm to take more optical 
features into account and compare it with other key frame 
extraction methods, for instance, naive sampling. 
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