Recon:
Verifying File System Consistency at Runtime

Angela Demke Brown
with Daniel Fryer, Jack Sun,

Rahat Mahmood, Shaun Benjamin, Tim Cheng
and Dr. Ashvin Goel

University of Toronto

927) —

October 21, 2011

Problem in a Nutshell

e File systems store valuable data
e Both business value and personal value

e Tension between performance and reliability

e And availability, scalability, new features,
backwards compatibility...

 Metadata describes content of file system
e Complex relationships exist
e Small errors can result in significant corruption

» Goal is to ensure metadata consistency

UsT —2

October 4, 2011

Causes of Metadata Inconsistency

1. Crash failures {&
e For performance, update metadata asynchronously
e Badly timed crash can leave inconsistent updates
v" Enable recovery to consistent state after crash
v' Journaling, soft updates copy-on-write systems

2. Hardware errors <9
e Latent sector errors (aka bitrot), lost or torn writes

v' Checksums + redundancy

> We assume these solutions are available

UsT —3

October 4, 2011

Remaining Cause of Inconsistency

3. Bugs in file systems

High Severity ext3 bug reports "
ext3 corruption fix 2002-06
Linux: Data corrupting ext3 bug in 2.4.20 2002-12
panic/ext3 fs corruption with RHEL4-U6-re20070927.0 2007-11
Re: [2.6.27] filesystem (ext3) corruption (access beyond end) 2008-06
linux-2.6: ext3 filesystem corruption 2008-09

linux-image-2.6.29-2-amdé4: occasional ext3 filesystem corruption 2009-06

ENOSPC during fsstress leads to filesystem corruption 2010-03
on ext2, ext3, and ext4

ext3: Fix fs corruption when make_indexed_dir() fails 2011-06

» New bugs still being found in mature file systems

UsT —4

October 4, 2011

Current Approaches

o Offline consistency check

 Our Disaster Recovery Plan | and repair program (e2fsck)
Goes Something Like This... %S|
ow

X Repairs may be incorrect

e Restore from last consistent
backup

DILBERT X Loss of all data more recent

By Scolt Ad

S than backup

MY

» Can we protect file systems from themselves?

UsT —5

October 4, 2011

Our Approach

o Verify that file system always preserves
metadata consistency

e Observe file system behavior at runtime
e Guard against updates that show symptoms of bugs
e Prevent corruption from propagating to media
e Aim to handle arbitrary file system bugs,
memory corruption

e Assume system already handles crash failures,
latent sector errors

» Recon makes silent failures detectable

UsT —6

October 4, 2011

Key Challenges

1. What consistency properties to check?

« Same as offline checker

X Global properties require full disk scan

v" Define consistency invariants, use local checks
2. When should consistency be checked?

e« When file system is supposed to be consistent
3. How should the properties be checked?

e Must be independent of the file system

927) —

October 4, 2011 7

|
Consistency Invariants

e Each global consistency property can be
converted to a local invariant

e Consistency property:
e all in-use data blocks marked in block bitmap

e Corresponding consistency invariant

o If transaction makes a data block live (add pointer
to the block), it must also flip a corresponding bit
(from O to 1) in block bitmap

 Invariant can be checked locally, by examining
updated pointer block and updated block bitmap

UsT —8

October 4, 2011

When to Check Consistency?

e In-memory metadata may be inconsistent
e Can’t check at arbitrary times

e Modern file systems use transactional updates
e e.¢., journaling, copy-on-write

Metadata Updates

Réplaystemrisiitedrisewtemttions
to recover from crash

Commit Record
= metadata is consistent

NP
A\ 4

1

Journal Blocks on Disk File System Blocks on Disk

» Check consistency at commit points

927) —

October 4, 2011 9

How to Check Invariants?

e Conflicting requirements

e Need to interpret file-system format, transaction
semantics to make consistency assertions

e Need to interpret semantics from outside because
file system may be buggy

e Recon is a framework for file-system specific
« metadata interpretation
e invariant checking

» Relies on pointer-before-block assumption

927) —

October 4, 2011 10

Recon System Architecture

FS request
A

User
\ 4
K l
erne File System
A
FS R API
Block Layer econ
recon_write,
recon_commit Recon
Metadata Ext3 _Recon
Write Cache
Metadata Btrfs_Recon
_» .
Read Cache
A
recon_read
=
disk

|97) m—

October 4, 2011

Ext3 Invariant Checking

Invariant:
block pointer set from 0 to N bit N set in bitmap

Change Records
' Type, Identity, Field, Old, New]

[Inode, 12, block[1], 0, 22717] Key BBM bit
[BBM, 22717, 0, 0, 1] set
[BGD, 0, free_blocks, 1500, 1499]

[Inode, 12, i_size, 4052, 7249] 22717 1 1
[Inode, 12, i_blocks, 8, 16] \/Ok

» Each invariant is checked independently

927) —

October 4, 2011 12

Handling Violations

Several options exist:

e Log warning and continue

e Obviously risky since we know something is
inconsistent!

e Force unmount of file system, prevent writes
e Reduces availability, loses most recent data

o Take snapshot of filesystem and continue
e And log warning message

e Micro-reboot file system a la Membrane

927) —

October 4, 2011 13

That’s All Folks

e Recon detects metadata corruption as well as
the offline checker

e But does so before the damage reaches disk
e The performance impact is reasonable

» Questions?

October 4, 2011

