
October 21, 2011

Recon:
Verifying File System Consistency at Runtime

Angela Demke Brown

with Daniel Fryer, Jack Sun,

Rahat Mahmood, Shaun Benjamin, Tim Cheng

 and Dr. Ashvin Goel

University of Toronto

October 4, 2011

• File systems store valuable data

• Both business value and personal value

• Tension between performance and reliability

• And availability, scalability, new features,

backwards compatibility…

• Metadata describes content of file system

• Complex relationships exist

• Small errors can result in significant corruption

Goal is to ensure metadata consistency

Problem in a Nutshell

2

October 4, 2011 3

Causes of Metadata Inconsistency

1. Crash failures

• For performance, update metadata asynchronously

• Badly timed crash can leave inconsistent updates

 Enable recovery to consistent state after crash

 Journaling, soft updates, copy-on-write systems

2. Hardware errors

• Latent sector errors (aka bitrot), lost or torn writes

 Checksums + redundancy

 We assume these solutions are available

October 4, 2011

Remaining Cause of Inconsistency

High Severity ext3 bug reports Closed

ext3 corruption fix 2002-06

Linux: Data corrupting ext3 bug in 2.4.20 2002-12

panic/ext3 fs corruption with RHEL4-U6-re20070927.0 2007-11

Re: [2.6.27] filesystem (ext3) corruption (access beyond end) 2008-06

linux-2.6: ext3 filesystem corruption 2008-09

linux-image-2.6.29-2-amd64: occasional ext3 filesystem corruption 2009-06

ENOSPC during fsstress leads to filesystem corruption

on ext2, ext3, and ext4

2010-03

ext3: Fix fs corruption when make_indexed_dir() fails 2011-06

4

New bugs still being found in mature file systems

3. Bugs in file systems

October 4, 2011

Current Approaches

5

• Offline consistency check

and repair program (e2fsck)

 Slow

Repairs may be incorrect

• Restore from last consistent

backup

Loss of all data more recent

than backup

 Can we protect file systems from themselves?

October 4, 2011 6

Our Approach

• Verify that file system always preserves

metadata consistency

• Observe file system behavior at runtime

• Guard against updates that show symptoms of bugs

• Prevent corruption from propagating to media

• Aim to handle arbitrary file system bugs,

memory corruption

• Assume system already handles crash failures,

latent sector errors

Recon makes silent failures detectable

October 4, 2011 7

Key Challenges

1. What consistency properties to check?

• Same as offline checker

 Global properties require full disk scan

 Define consistency invariants, use local checks

2. When should consistency be checked?

• When file system is supposed to be consistent

3. How should the properties be checked?

• Must be independent of the file system

October 4, 2011 8

Consistency Invariants

• Each global consistency property can be

converted to a local invariant

• Consistency property:

• all in-use data blocks marked in block bitmap

• Corresponding consistency invariant

• If transaction makes a data block live (add pointer

to the block), it must also flip a corresponding bit

(from 0 to 1) in block bitmap

• Invariant can be checked locally, by examining

updated pointer block and updated block bitmap

October 4, 2011 9

When to Check Consistency?

• In-memory metadata may be inconsistent
• Can’t check at arbitrary times

• Modern file systems use transactional updates
• e.g., journaling, copy-on-write

Check consistency at commit points

Journal Blocks on Disk

Metadata Updates

1 2

File System Blocks on Disk

C A C B A Commit Record

 metadata is consistent

File System is inconsistent Replay committed transactions

to recover from crash

October 4, 2011 10

How to Check Invariants?

• Conflicting requirements

• Need to interpret file-system format, transaction

semantics to make consistency assertions

• Need to interpret semantics from outside because

file system may be buggy

• Recon is a framework for file-system specific

• metadata interpretation

• invariant checking

Relies on pointer-before-block assumption

October 4, 2011

Recon

11

Recon System Architecture

FS request

File System

disk

User

Kernel

Block Layer

Metadata

Write Cache

recon_write,

recon_commit

Metadata

Read Cache

recon_read

Ext3_Recon

Btrfs_Recon

FS Recon API

October 4, 2011

Ext3 Invariant Checking

12

Change Records
[Type, Identity, Field, Old, New]

block pointer set from 0 to N bit N set in bitmap
Invariant:

Key New Ptr BBM bit

set

…

…

[Inode, 12, block[1], 0, 22717]

[BBM, 22717, 0, 0, 1]

[BGD, 0, free_blocks, 1500, 1499]

[Inode, 12, i_size, 4052, 7249]

[Inode, 12, i_blocks, 8, 16]

 Each invariant is checked independently

22717 1 1

Ok

October 4, 2011

Handling Violations

Several options exist:

• Log warning and continue

• Obviously risky since we know something is

inconsistent!

• Force unmount of file system, prevent writes

• Reduces availability, loses most recent data

• Take snapshot of filesystem and continue

• And log warning message

• Micro-reboot file system a la Membrane

13

October 4, 2011

That’s All Folks

14

• Recon detects metadata corruption as well as

the offline checker

• But does so before the damage reaches disk

• The performance impact is reasonable

Questions?

