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 Challenges:

 Single-core performance trend is gloomy

 Exploit chip-multiprocessors with multithreaded applications 

 The memory gap is paramount

 Latency, bandwidth, power
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Chip-Multiprocessor Era

2[Figure: Hennessy and Patterson, Computer Architecture- A Quantitative approach]

 Two basic remedies:

 Cache – Reduce the number of out-of-die memory accesses

 Multi-threading – Hide memory accesses behind threads execution

 How do they play together? 

 How do we make the most out of them?



 The many-core span

 Cache-Machines ↔ MT-Machines

 A high-level analytical model 

 Performance curves study

 Few examples

 Summary
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Cache-Machines vs. MT-Machines

# of Threads

Cache/Thread

Thread Context

Cache

Cache Architecture
Region

 Many-Core – CMP with many, simple cores

 Tens  hundreds of Processing Elements (PEs)

MT Architecture
Region

Intel’s Larrabee

…

Nvidia’s GT200
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Nvidia’s Fermi

Cache

Core

Multi-Core 
Region

Uni-Processor
Region

Cache

cccc

 What are the basic tradeoffs?

 How will workloads behave across the range?

 Predicting performance



 The many-core span

 Cache-Machines ↔ MT-Machines

 A high-level analytical model

 Performance curves study

 Few examples

 Summary
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 Use both cache and many threads to shield memory access

 The uniform framework renders the comparison meaningful

 We derive simple, parameterized equations for performance, power, BW,..

A Unified Machine Model
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Cache Machines
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C

 Many cores (each may have its private L1) behind a shared cache
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 Memory latency shielded by multiple thread execution

Multi-Thread Machines
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Analysis (1/3)
 Given a ratio of memory access instructions rm (0≤rm≤1)

 Every 1/rm instruction accesses memory 

 A thread executes 1/rm instructions

 Then stalls for tavg cycles

 tavg=Average Memory Access Time (AMAT) [cycles]
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Thread Context
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 PE stays idle unless filled with instructions from other threads

 Each thread occupies the PE for additional                      cycles

 threads needed to fully utilize each PE          

Analysis (2/3)
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Analysis (3/3)
 Machine utilization:

 Performance in Operations Per Seconds [OPS]:
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Performance Model
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 The many-core span

 Cache-Machines ↔ MT-Machines

 A high-level analytical model 

 Performance curves study

 Few examples

 Summary
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Workloads:

 Can be parallelized into large number of threads

 No serial part

 Threads are independent of each other 

 No wait time/synchronization

 No data sharing:

 Cache capacity divided among 
all running threads

 Cache hit rate function:

HW/SW Assumptions 

Parameter Value
NPE 1024
S$ 16 MByte

CPIexe 1
f 1 GHz
tm 200 cycles
rm 0.2

Hardware:
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Increase in 
cache size

Cache Size Impact

..AND also Valuable in the MT region

 Caches reduce off-chip bandwidth delay the BW saturation point



 Increase in memory latency  Hinders the MT region
 Emphasise the importance of caches

Unlimited BW to memory
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 Simulation results from the PARSEC workloads kit 

 Swaptions:

 Perfect Valley 

Hit Rate Function Impact

Swaptions
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 Simulation results from the PARSEC workloads kit 

 Raytrace:

 Monotonically-increasing performance

Hit Rate Function Impact

Raytrace
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 Three applications families based on cache miss rate dependency:
 A “strong” function of number of threads – f(Nq) when q>1

 A “weak” function of number of threads - f(Nq) when q≤1

 Not a function of number of threads 

Threads
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 Simulation results from the PARSEC workloads kit 

 Canneal

 Not enough parallelism available

Workload Parallelism Impact

Canneal
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 The many-core span

 Cache-Machines ↔ MT-Machines

 A high-level analytical model 

 Performance curves study

 Few examples

 Summary
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 A high-level model for many-core engines

 A unified framework for machines and workloads from across the range

 Validated by simulations with PARSEC workloads

 A vehicle to derive intuition

 Qualitative study of the tradeoffs 

 A tool to understand parameters impact

 Identifies new behaviors and the applications that exhibit them

 Enables reasoning of complex phenomena

 First step towards escaping the valley 

 Current work: architectural mechanisms to bridge the valley
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Model Parameters
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Model Parameters

27

Parameter Description
NPE Number of PEs (in-order processing elements)

S$ Cache size [Bytes]

Nmax Maximal number of thread contexts in the register file

CPIexe Average number of cycles required to execute an 
instruction assuming a perfect (zero-latency) memory 
system [cycles]

f Processor frequency [Hz]

t$ Cache latency [cycles]

tm Memory latency [cycles]

BWmax Maximal off-chip bandwidth [GB/sec]

breg Operands size [Bytes]

 Machine parameters:
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Model Parameters
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 Workload parameters:

Parameter Description
n Number of threads that execute or are in ready state 

(not blocked) concurrently

rm Fraction of instructions accessing memory out of the 
total number of instructions [0≤rm≤1]

Phit(s, n) Cache hit rate for each thread, when n threads are 
using a cache of size s
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Model Parameters
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 Power parameters:

Parameter Description
eex Energy per operation [j]

e$ Energy per cache access [j]

emem Energy per memory access [j]

Powerleakage Leakage power [W]
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Parsec Workloads
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Model Validation, PARSEC Workloads

Raytrace
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Blackscholes
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Related Work
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 Similar approach of using high level models:

 Morad et al., CA-Letters 2005

 Hill and Michael, IEEE Computer 2008

 Eyerman and Eeckhout, ISCA-2010
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