
MLS Oct. 2011 /151

Semantics for Transactional
Languages

Michael L. Scott

ASPLOS PC “mini symposium”
21 October 2011

thoughts inspired by a series of wonderful students

MLS Oct. 2011 /15

A Simple Idea [Herlihy & Moss ’93]

•User labels atomic sections

•Underlying system ensures atomicity;
executes in parallel when possible (speculation)

•Motivations
» performance (via lock elision)
» simplicity: as easy as coarse-grain locks

2

atomic {
! ...
}

MLS Oct. 2011 /153

Since Then
•Surge of interest ~2003, with the multicore

revolution and with breakthroughs in HW (UWisc,
UIUC) and SW (Sun, Cambridge)

•Scores of papers & systems; at least a dozen
active groups; TRANSACT 7 coming up

•Through the trough
 of disillusionment?

MLS Oct. 2011 /15

A Fleeting Opportunity

•HTM is coming
» Azul, Sun Rock, AMD ASF
» IBM has announced for Blue Gene/Q
» ... ?

•STM for backward compatibility, fallback on HW
overflow

•Language support essential
•Narrow window in time to “get the semantics

right”

4

MLS Oct. 2011 /15

Outline

•Assertions
» atomicity is central
» speculation is an implementation issue (only)
» small transactions are what matter
» privatization is essential

– necessary for correctness
– solves the problem of legacy synchronization

•Open Questions
» non-transactional reads and writes
» big transactions, integration with system transactions
» relationship to “deterministic parallel programming”

5

MLS Oct. 2011 /156

Memory Model

•Transactional sequential consistency (TSC)
» ideal but expensive: global total order on accesses

– consistent w/ program order <p

– w/ each transaction contiguous — atomic

•Strict serializability (SS)
» txns globally totally ordered wrt one another
» also ordered wrt preceding & following accesses of same

thread (though those accesses aren’t necessarily globally
ordered wrt one another)

•Transactional Data-Race Freedom (TDRF)
» if all conflicting accesses are ordered by SS
» then the program appears to be TSC

MLS Oct. 2011 /15

Strong Isolation Is a Non-Issue

•Hard to explain to the programmer
» what is a memory access?

•Heavy performance penalty in STM
•Only matters in racy programs

» constrains the behavior of buggy code
» less than you want (TSC); more than you need to build

what you want (TSC given TDRF)
» may be useful for debugging, but a good race

detector is better

7

MLS Oct. 2011 /15

Opacity Is a Semantic Non-Issue

•Aborted transactions do not appear in
(language-level) histories

•Opacity is simply one end of the implementation
spectrum: validate at every read

•Sandboxing is the other end: validate before
every “dangerous” operation (and periodically)

•Some very promising implementations in the
middle: delayed/out-of-band validation
» ask me later!

8

MLS Oct. 2011 /15

Privatization Is Essential

•Definition: transaction T with history prefix P
privatizes datum D if
» ∃ extensions of P in which a first access to D after P

occurs in different threads
» ∀ extensions of P+T, the first access to D after P+T

occurs in the same one thread

•Crucial for performance with STM
•Solves the problem of legacy synchronization

» locking is privatization —
acquire and release are small atomic blocks

9

MLS Oct. 2011 /1510

Transactions ≠ Critical Sections

L.acquire() atomic {
 ... ≡ ...
L.release() }

L.acquire() atomic { ... }
 ... ≡ ...
L.release() atomic { ... }

MLS Oct. 2011 /1511

Open Questions

MLS Oct. 2011 /15

Non-transactional Accesses

•Want reads for, e.g., ordered speculation, high-
performance hybrid TM
» clearly important at the HTM ISA level
» not clear whether needed/wanted at language API level

•Want writes out of aborted txns for debugging
» again, clearly important at the HTM ISA level

– and probably more useful if immediate
» probably important at the language level too

– not as clear that these need to be immediate

•Immediate writes, and writes in aborted txns, a
challenge for the memory model

12

MLS Oct. 2011 /15

Atomicity and Determinism

•See our paper at DISC’11
» languages/idioms that guarantee all abstract executions

will be “equivalent” in some well-defined sense

•Independent split-merge an obvious foundation
for language-level determinism

•Atomic commutative [+associative] ops an
obvious extension

•Is there anything else?
» atomic event handlers, perhaps?

13

MLS Oct. 2011 /15

The Bottom Line: Keep It Simple!

•Atomicity is central
•Speculation is an implementation issue (only)
•Small transactions are what matter
•Privatization is essential (and solves the

problem of legacy synchronization)

14

MLS Oct. 2011 /15

www.cs.rochester.edu/research/synchronization/

 Thanks to Bill Scherer, Virendra Marathe,
 Mike Spear, Luke Dalessandro, Li Lu, ...

15

