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A Simple Idea [Herlihy & Moss ’93]

•User labels atomic sections

•Underlying system ensures atomicity;
executes in parallel when possible (speculation)

•Motivations
» performance (via lock elision)
» simplicity: as easy as coarse-grain locks
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atomic {
! ...
}
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Since Then
•Surge of interest ~2003, with the multicore 

revolution and with breakthroughs in HW (UWisc, 
UIUC) and SW (Sun, Cambridge)

•Scores of papers & systems; at least a dozen 
active groups; TRANSACT 7 coming up

•Through the trough
 of disillusionment?
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A Fleeting Opportunity

•HTM is coming
» Azul, Sun Rock, AMD ASF
» IBM has announced for Blue Gene/Q
» ... ?

•STM for backward compatibility, fallback on HW 
overflow

•Language support essential
•Narrow window in time to “get the semantics 

right”
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Outline

•Assertions
» atomicity is central
» speculation is an implementation issue (only)
» small transactions are what matter
» privatization is essential

– necessary for correctness
– solves the problem of legacy synchronization

•Open Questions
» non-transactional reads and writes
» big transactions, integration with system transactions
» relationship to “deterministic parallel programming”
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Memory Model

•Transactional sequential consistency (TSC)
» ideal but expensive: global total order on accesses

– consistent w/ program order <p

– w/ each transaction contiguous — atomic

•Strict serializability (SS)
» txns globally totally ordered wrt one another
» also ordered wrt preceding & following accesses of same 

thread (though those accesses aren’t necessarily globally 
ordered wrt one another)

•Transactional Data-Race Freedom (TDRF)
» if all conflicting accesses are ordered by SS
» then the program appears to be TSC
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Strong Isolation Is a Non-Issue

•Hard to explain to the programmer
» what is a memory access?

•Heavy performance penalty in STM 
•Only matters in racy programs

» constrains the behavior of buggy code
» less than you want (TSC); more than you need to build 

what you want (TSC given TDRF)
» may be useful for debugging, but a good race

detector is better
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Opacity Is a Semantic Non-Issue

•Aborted transactions do not appear in 
(language-level) histories

•Opacity is simply one end of the implementation 
spectrum: validate at every read

•Sandboxing is the other end: validate before 
every “dangerous” operation (and periodically)

•Some very promising implementations in the 
middle: delayed/out-of-band validation
» ask me later!
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Privatization Is Essential

•Definition: transaction T with history prefix P 
privatizes datum D if
» ∃ extensions of P in which a first access to D after P 

occurs in different threads
» ∀ extensions of P+T, the first access to D after P+T 

occurs in the same one thread

•Crucial for performance with STM
•Solves the problem of legacy synchronization

» locking is privatization —
acquire  and  release  are small atomic blocks
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Transactions ≠ Critical Sections

L.acquire()               atomic {
  ...             ≡         ...
L.release()               }

L.acquire()            atomic { ... }
  ...            ≡       ...
L.release()            atomic { ... }
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Open Questions
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Non-transactional Accesses

•Want reads for, e.g., ordered speculation, high-
performance hybrid TM
» clearly important at the HTM ISA level
» not clear whether needed/wanted at language API level

•Want writes out of aborted txns for debugging
» again, clearly important at the HTM ISA level

– and probably more useful if immediate
» probably important at the language level too

– not as clear that these need to be immediate

•Immediate writes, and writes in aborted txns, a 
challenge for the memory model

12



MLS Oct. 2011 /15

Atomicity and Determinism

•See our paper at DISC’11
» languages/idioms that guarantee all abstract executions 

will be “equivalent” in some well-defined sense

•Independent split-merge an obvious foundation 
for language-level determinism

•Atomic commutative [+associative] ops an 
obvious extension

•Is there anything else?
» atomic event handlers, perhaps?
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The Bottom Line: Keep It Simple!

•Atomicity is central
•Speculation is an implementation issue (only)
•Small transactions are what matter
•Privatization is essential (and solves the 

problem of legacy synchronization)
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www.cs.rochester.edu/research/synchronization/

         Thanks to Bill Scherer, Virendra Marathe,
         Mike Spear, Luke Dalessandro, Li Lu, ...
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