MLS

Semantics for Transactional
Languages

Michael L. Scott
B RO

ASPLOS PC “mini symposium”
21 October 2011

thoughts inspired by a series of wonderful students

1/15




A Simple ldea [Herlihy & Moss ’93]

e User labels atomic sections

atomic {

e Underlying system ensures atomicity;
executes in parallel when possible (speculation)

e Motivations
» performance (via lock elision)
» simplicity: as easy as coarse-grain locks

MLS Oct. 2011 2 15




Since Then

e Surge of interest ~2003, with the multicore
revolution and with breakthroughs in HW (UWisc,
UIUC) and SW (Sun, Cambridge)

® Scores of papers & systems; at least a dozen
active groups; TRANSACT 7 coming up

® Through the trough
of disillusionment?

MLS Oct. 2011 3 /15




A Fleeting Opportunity

e HTM is coming
» Azul, Sun Rock, AMD ASF

» |IBM has announced for Blue Gene/Q
)» ?

e STM for backward compatibility, fallback on HW
overflow

e Language support essential

e Narrow window in time to “get the semantics
right”

MLS Oct. 2011 4 115




Outline

® Assertions
» atomicity is central
» speculation is an implementation issue (only)
» small transactions are what matter
» privatization is essential
- necessary for correctness
- solves the problem of legacy synchronization

e Open Questions
» non-transactional reads and writes
» big transactions, integration with system transactions
» relationship to “deterministic parallel programming”

MLS Oct. 2011 o5 /15




Memory Model

¢ Transactional sequential consistency (TSC)
» 1deal but expensive: global total order on accesses
— consistent w/ program order <p
- w/ each transaction contiguous — atomic

e Strict serializability (SS)

» txns globally totally ordered wrt one another

» also ordered wrt preceding & following accesses of same
thread (though those accesses aren’t necessarily globally
ordered wrt one another)

e Transactional Data-Race Freedom (TDRF)
» if all conflicting accesses are ordered by SS
» then the program appears to be TSC

MLS Oct. 2011 6 /15




MLS

Strong Isolation Is a Non-Issue

e Hard to explain to the programmer
» what is a memory access?

e Heavy performance penalty in STM

e Only matters in racy programs
» constrains the behavior of buggy code

» less than you want (TSC); more than you need to build
what you want (TSC given TDRF)

» may be useful for debugging, but a good race
detector is better

Oct. 2011

7 /115




Opacity Is a Semantic Non-Issue

e Aborted transactions do not appear in
(language-level) histories

e Opacity is simply one end of the implementation
spectrum: validate at every read

e Sandboxing is the other end: validate before
every “dangerous” operation (and periodically)

e Some very promising implementations in the
middle: delayed/out-of-band validation
» ask me later!

MLS Oct. 2011 8 /15




Privatization Is Essential

e Definition: transaction T with history prefix P

privatizes datum D if
» d extensions of P in which a first access to D after P
occurs in different threads
» YV extensions of P+T, the first access to D after P+T
occurs in the same one thread

e Crucial for performance with STM

e Solves the problem of legacy synchronization

» locking is privatization —
acquire and release are small atomic blocks

MLS Oct. 2011 9 115




MLS

Transactions # Critical Sections

L.acquire() atomic { ... }

L.release() atomic { ... }

Oct. 2011 10/15




MLS

Open Questions

Oct. 2011

11/15




Non-transactional Accesses

e Want reads for, e.g., ordered speculation, high-

performance hybrid TM

» clearly important at the HTM ISA level
» not clear whether needed/wanted at language API level

e Want writes out of aborted txns for debugging
» again, clearly important at the HTM ISA level
— and probably more useful if immediate
» probably important at the language level too
- not as clear that these need to be immediate

e Immediate writes, and writes in aborted txns, a
challenge for the memory model

Oct. 2011 12 /15




Atomicity and Determinism
e See our paper at DISC'11

» languages/idioms that guarantee all abstract executions
will be “equivalent” in some well-defined sense

¢ Independent split-merge an obvious foundation
for language-level determinism

e Atomic commutative [+associative] ops an
obvious extension

e |[s there anything else?
» atomic event handlers, perhaps?

MLS Oct. 2011 13/15




The Bottom Line: Keep It Simple!

e Atomicity is central
e Speculation is an implementation issue (only)
e Small transactions are what matter

® Privatization is essential (and solves the
problem of legacy synchronization)

MLS Oct. 2011 14/15




ROCHESTER

www.cs.rochester.edu/research/synchronization/

Thanks to Bill Scherer,Virendra Marathe,
Mike Spear, Luke Dalessandro, Li Lu, ...

MLS Oct. 2011 15 /15




