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Abstract
We discuss the integration oftransactional memoryinto
the C++ programming language. We take a decidedly prag-
matic approach in this paper: Our goal is to induce minimal
changes consistent with implementability, usable transac-
tional semantics, and the prevalent styles of C++ programs.
In particular, we want to avoid designing a new language;
rather, we want to enable incremental adoption of transac-
tional memory into existing C++ code bases. The contribu-
tion of this paper is a careful analysis of the options rather
than a final solution. In some cases, reasonable alternatives
exist and experience in implementation and use must guide
the final choice.

1. Introduction
With the advent of chip multiprocessors, it is increasingly
important for software to make effective use of parallelism
to exploit advances in technology. Thus, programmers must
increasingly learn to write concurrent programs. This will
not be easy: programmers today typically rely on a combi-
nation of locks and conditions to prevent concurrent access
by different threads to the same shared data. Although this
approach simplifies reasoning about interactions by allowing
programmers to treat sections of code as “atomic”, it suffers
from a number of shortcomings.

First, data and locks are associatedby convention; failure
to follow the convention is a common source of subtle bugs
that are hard to reproduce and hard to diagnose. When the
convention is followed correctly, it is common to lock too
conservatively, resulting in poor performance. Locks alsoin-
troduce a difficult granularity tradeoff:coarse-grainedlocks
use fewer locks for more data, generally resulting in sim-
pler code but poor scalability;fine-grainedlocks protect less
data, resulting in better scalability, at the cost of additional
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locking overhead and significantly increased programming
complexity, which makes applications harder to understand,
debug, and maintain. Furthermore, operations implemented
with locks cannot be directly composed with each other, a
significant disadvantage for software engineering.

In reaction to these problems, thetransactionalmodel of
synchronization has received attention as an alternative pro-
gramming model. In transactional programming, code that
accesses shared memory can be grouped intotransactions,
which are intended to be executed atomically: operations of
different transactions should not appear to be interleaved. A
transaction maycommit, in which case all its operations ap-
pear to take place atomically, orabort, in which case its op-
erations appear not to have taken place at all. If two trans-
actions conflict—that is, if they access the same object, and
at least one of them writes it—then the conflict must be re-
solved, often by aborting one of the transactions. An aborted
transaction is typically retried until it commits, usuallyaf-
ter taking some measures to reduce contention and avoid
further conflicts. System support for transactions has been
investigated in hardware [2, 13, 20, 34, 35], in software
[14, 15, 18, 24, 30, 40, 33, 43], and in schemes that mix
hardware and software [6, 25, 27, 34, 38].

In this paper, we discuss the integration of transactional
memory into the C [22] and C++ [23] programming lan-
guages. We concentrate our discussion on C++, because the
issues for C++ are a superset of those for C.

We have two pragmatic goals for our design:

useful to working programmers Transactions should be
integrated into C++ in a way that is usable by every-
day programmers. When considering various options for
integration, we attend not only to the semantics of C++,
but also to the prevalent styles of C++ programming.
In particular, we consider it important that programmers
can begin to use transactions gradually in existing code
bases, rather than having to write entire transactional ap-
plications from scratch. Such attention is crucial for the

1 TRANSACT 2007



result to be useful in practice: adoption of transactional
memory will almost certainly be incremental.

sooner rather than later Several subtle issues that arise in
integrating transactional memory into C++ cannot be
fully resolved without experience in implementation and
use. Furthermore, many facets of transactional memory
design have not been thoroughly explored, and we would
similarly benefit from experience in implementation and
use. To gain such experience, we prefer an experimen-
tal implementation sooner rather than a highly developed
implementation later. An early implementation makes
it possible to gain crucial experience in preparation for
more comprehensive solutions. As such, our integration
with C++ should prefer minimal language changes con-
sistent with implementability.

To begin, we enumerate several desiderata for our design:

composability Transactions should compose, which means
they must be nestable, because transactions might be be-
hind abstraction boundaries such as functions or classes.

minimality We should minimize changes to the language,
introducing as few new features as possible and preserv-
ing the style of C++ programming.

predictability The mechanisms of transactions should have
effects that are predictable by ordinary programmers.

orthogonality Consequently, where possible, transactions
should be orthogonal to other language mechanisms.

implementability Transactions should be within reach of
current implementation technology. Although we do not
discuss implementation details for most of the issues cov-
ered in this paper, practical implementability has guided
our deliberations.

incremental developmentWe generally prefer to omit any
feature that can be added later without breaking correct
existing code if we are not sure the feature is needed, or
believe more experience is needed before deciding how
to best include the feature. Similarly, the treatment of in-
correct programs can be improved over time; for exam-
ple, we might allow undefined behavior given a certain
programming error in an early implementation, and later
add support for reporting illegal behavior when it occurs,
and later still add compiler support for preventing such
behavior.

incremental adoption We should avoid barriers to begin-
ning to use transactions. Thus, we eschew designs that
impose significant overhead on code that does not use
transactions, as well as designs that require recompila-
tion of code not used in transactions (for example, legacy
libraries).

scalability The base mechanisms should allow applications
to scale reasonably.

efficiency Transactions should not induce unacceptable
overhead, particularly in parts of the code that do not
handle exceptions or use transactions.

The contribution of this paper is a careful analysis of the
options, rather than a final solution. In some cases, reason-
able alternatives exist; experience in implementation anduse
must guide the final choice.

2. Background
Transactional memory is adapted from the notion of trans-
actions in database systems [11], which were originally de-
signed to simplify error handling while protecting data from
corruption: Instead of figuring out what went wrong and re-
pairing the damage when an error or some other unexpected
situation arises, the transaction is simply aborted and, ifap-
propriate, retried.

In a concurrent system, transactions have two additional
benefits: By guaranteeing an all-or-nothing semantics, trans-
actions insulate different parts of a program from each other
and increase the granularity of atomic actions. Thus, they
provide a kind of modularity for concurrent programs that
reduces the possible behaviors of concurrent programs, and
thus simplifies reasoning about them. Also, the ability to re-
cover from errors by aborting transactions enables a simple
but powerful way to manage contention: Rather than ensur-
ing that a transaction experiences no conflict (by holding
locks for shared data, for example), we can optimistically
assume that it will not, and then check this assumption be-
fore committing the transaction. If conflict did occur, we can
simply abort and retry the transaction.

Herlihy and Moss [20] first proposedtransactional mem-
ory as a hardware mechanism leveraging caching and the
cache-coherence protocol to provide small transactions.
Shavit and Touitou [42] introducedsoftware transactional
memory, and gave a nonblocking implementation for it, but
one that was too inefficient and inflexible to be practical,
and the idea lay fallow for almost a decade. Interest was
reignited by converging developments in both software and
hardware.

In hardware, Rajwar and Goodman exploited specula-
tion machinery to elide the acquisition of locks for criti-
cal sections that encountered no conflict [36, 37]. Several
other research groups also used caching and speculation,
and proposed new mechanisms, to provide other transac-
tional behavior, either explicitly or “behind the scenes” (e.g.,
[2, 13, 32, 34, 38], and many others). In software, Herlihy
et al. [18] introduceddynamic software transactional mem-
ory, which was plausibly efficient and flexible enough to
use in practice. They achieved this by usingobstruction-
freedom[16], a weak notion of nonblocking progress, that
separates out the conditions necessary to guarantee safety
and enable progress from those used to guarantee progress
in practice. The latter can be provided by separable con-
tention management mechanisms, which have since been ex-
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plored by several researchers, particularly at the University
of Rochester [12, 28, 30, 41]. Harris and Fraser provided the
first language-level and run-time support for transactional
memory [14]. Since then, transactional memory has been a
hot topic of research, both in academia and industry, result-
ing in many advancements and new directions for hardware,
software, and combinations thereof (e.g., [1, 5, 6, 7, 8, 10,
15, 17, 31, 40, 45] and many others).

In designs of transactional memory, a central question to
ask is: What is the basic unit of data for the transactional
memory? For hardware, this is primarily a question of gran-
ularity. However, for software, it is also a question about
the underlying infrastructure. In particular, we distinguish
object-basedandword-basedtransactional memory.

Object-based transactional memory [9, 17, 19, 29, 31] re-
lies on the underlying object infrastructure provided by im-
plementations of object-oriented languages. This approach is
attractive because much of the work required to implement
transactional memory can leverage the object infrastructure,
which typically already maintains metadata about the objects
and mediates access to those objects. Thus, object-based sys-
tems can provide transactional access with relatively little
additional overhead over the cost of nontransactional access.
Also, the language may also provide type safety guarantees
that a transactional memory implementation can leverage to
ensure certain properties of data that can be accessed trans-
actionally.

In contrast, a word-based system is based on transactions
over actual memory, not the abstractions that might be rep-
resented by that memory. In this sense, all proposed hard-
ware transactional memory systems are word-based (how-
ever, hardware transactional memory implementations often
manage data at the granularity of a cache line). A word-
based software transactional memory without specialized
hardware support must typically maintain its metadata sepa-
rate from the data being accessed by the transactions, and in-
sert code around every memory access to maintain the meta-
data and detect conflicts.

3. Basic Design
3.1 Object-based vs. word-based approaches

When integrating transactional memory into C++, we have
to choose between an object-based approach and a word-
based approach. As discussed earlier, an object-based ap-
proach might leverage C++’s existing class mechanism, and
would likely introduce less overhead. This is the approach
taken, for example, for the Rochester Software Transactional
Memory Runtime [31].

However, C++ supports both object-oriented program-
ming and the traditional procedural programming style of
C. For efficiency and compatibility with C, the C++ stan-
dard [23] distinguishes two kinds of data types:POD (i.e.,
“plain old data”) andnon-POD. C++ does not maintain an
object infrastructure for POD types, and indeed, not even

for all non-POD types—that privilege is reserved for poly-
morphic types. Thus, taking an object-based approach would
preclude transactional manipulation of many common data
types. We chose the word-based approach for this reason.

We considered adopting a combined approach, leveraging
the object infrastructure for polymorphic non-POD types,
and using a word-based transactional memory for POD types
and non-polymorphic non-POD types. However, this would
introduce significant complexity to the design, introducing
many new issues about how the two approaches interact,
contradicting our principle of minimality.

3.2 Transactional control construct

Having decided on a word-based transactional memory, we
need a control construct to introduce transactions. We chose
the simplest and most natural construct for C/C++: a new
control statement, which we designate using the keyword
transaction:1

transaction statement

Typically, statementwould be a compound statement. The
transaction ends, either committing or aborting, when con-
trol exits the statement. Deciding when it should commit and
when it should abort is a major aspect of the design, which
we discuss in Section 3.5. By the orthogonality principle,
the semantics of code executed within a transaction should,
as much as possible, be the same as if it were executed out-
side a transaction. However, full orthogonality is not possi-
ble; we discuss various operations and their usability within
transactions below.

Like other structured control constructs, atransaction
statement introduces a new local scope: variables declared
ouside atransaction statement are accessible within the
statement, but those declared within the statement are not
accessible outside the statement.

However, unlike most C++ structured control constructs,
it does not make sense for atransaction statement to af-
fect only the code in its static extent: doing so would prohibit
the use of function calls within such statements, a severe re-
striction. Instead, atransaction statement must apply to
all code executed within its dynamic extent. In this way, it is
similar to thetry statement, which affectsthrow statements
within its dynamic extent. This similarity is not surprising
because transactions and exceptions are both intended for
restricting and recovering from anomalous execution. This
overlap in intended purposes makes the interaction between
transactions and exceptions more interesting, and we discuss
issues that arise in Section 4.

1 We do not useatomic as a keyword because the ISO C++ standards
committee has a well developed proposal to useatomic as the name for a
predefined template for machine-level atomic operations such as load, store,
fetch-and-add, and compare-and-swap. Thus, usingatomic as the keyword
would likely conflict with the next release of the C++ standard.
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The transaction statement is not quite sufficient: it
cannot express that a constructor with a member initializer
list should be executed atomically. That is, in the constructor

myclass::myclass() :

membervar(30), another(20) { ... }

the member initializations are not part of a statement and
hence cannot be wrapped by atransaction statement.
Still, because constructors may execute arbitrary code, the
programmer might want the member initializations and the
body of the constructor to be executed atomically using a
transaction. A similar problem arises with catching excep-
tions in member intializations, which is solved by inserting
try into the constructor syntax, as in, for example:

myclass::myclass() try :

membervar(30), another(20) { ... }

catch ( ... ) { ... }

We adopt the analogous solution to enclose a constructor’s
member initializations and body within a transaction. That
is, we can write:

myclass::myclass() transaction :

membervar(30), another(20) { ... }

An alternative to usingtransaction statements for in-
troducing transactions is to support “transactional functions”,
that is, functions whose call and return are the boundaries
of a transaction. Such a function would be convenient for
defining a transaction that returns a value. However, al-
though transactional functions can be implemented with
transaction statements, because functions may be granted
friend access to some classes: splitting out a block of code
into a separate function may make critical variables inacces-
sible to that code.

In addition, function boundaries are too coarse. In partic-
ular, argument evaluation is not considered part of the called
function, so transactions that desire to include the argument
evaluation must be moved to the calling function. For exam-
ple, given a transactional functionf, in the function call

f(x++);

the increment ofx is not part of a transaction. With trans-
actional functions, there is no mechanism for including ar-
gument evaluation in the transaction without rewriting the
surrounding code, splitting out the call into a separate func-
tion. On the other hand, atransaction statement can easily
include or exclude the argument evaluation.

tmp = x++; transaction{ f(tmp); }

// args not subsumed

transaction{ f( x++ ); } // args subsumed

Therefore, by the principle of minimality, we omit trans-
actional functions from our initial design.

3.3 Strong vs. weak atomicity

An important issue concerns the interaction between transac-
tions and nontransactional memory accesses, i.e., those not
executed inside a transaction. One possibility is to provide
strong atomicity[3], which guarantees that nontransactional
memory accesses are atomic with respect to transactions.
Implementations that do not make this guarantee are consid-
ered to provideweak atomicity, in which weak or no seman-
tic guarantees are made if the same memory locations are
concurrentlyaccessed by transactions and by nontransac-
tional memory accesses, essentially requiring programmers
to avoid such behavior.

Strong atomicity provides simpler semantics, and thus
is preferable if we can achieve it efficiently. This is possi-
ble with appropriate hardware support, or in an object-based
software transactional memory, where all memory accesses
can be mediated by a run-time system (i.e., in a managed
language). One conceptually simple approach is to treat any
nontransactional memory access as a single-access transac-
tion. However, in C and POD C++, without special hardware
support, we generally cannot transform a nontransactional
access into a transactional access at run time.

An alternative is to recompile all code, transforming all
ordinary memory accesses into short transactions. This ap-
proach has two significant problems. First, transforming all
ordinary memory accesses into transactions imposes signif-
icant overhead on theentire application, not just the parts
that use transactions. While optimizations may reduce this
overhead, even very aggressive optimization is unlikely to
eliminate it entirely, and in any case is incompatible with
our goal of achieving initial implementations sooner rather
than later.

Second, requiring recompilation of all code is not com-
patible with our desire to support incremental adoption: we
would like to enable programmers to start using transactions
while only recompiling the code that uses transactions or
may be called from within transactions.

With most transactional memory implementations, as
long as it is guaranteed that no variable isconcurrently
accessed both by transactions and by nontransactional ac-
cesses, there is no problem. This raises the question of
how to follow this rule. Static methods for enforcing this
rule—for example based on having transactional and non-
transactional types—are too inflexible. The approach would
be analogous to the familiar C++ problem of introducing
const qualification into a program written withoutconst:
the introduction of oneconst qualifier may require its in-
troduction in every function header in a call chain, which
is sufficiently disruptive that it has earned the termconst
poisoning. Dynamic solutions have been proposed that aim
to handle these issues transparently to the programmer [26],
but these impose some overhead on all code, not just trans-
actions, and are not sufficiently mature for inclusion in an
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initial implementation, especially because, as developedso
far, they assume an object infrastructure.

Primarily for these reasons, we decided to require pro-
grammers to follow the rule that forbids concurrent transac-
tional and nontransactional accesses to the same data, but
not to enforce it, thereby allowing transactional memory
implementations that do not enforce strong atomicity. Al-
though this approach is less safe, we believe that is consistent
with the spirit of C/C++ programming. Furthermore, tools
to help programmers avoid and/or detect violations of the
weak atomicity rules may eventually be successful enough
that strong atomicity is not required.

Choosing not to support strong atomicity initially is con-
sistent with our goals of incremental development and adop-
tion. We can decide later based on experience whether strong
atomicity is needed and programs that are correct under
weak atomicity will remain correct if strong atomicity is
adopted.

3.4 Nesting

The desire to use programmer-defined abstractions within a
transaction implies the need to permit nested transactions.
Otherwise, the use of a transaction as an implementation de-
tail would be exposed in the interface. Basic composition can
be achieved with simpleflat nesting, in which a nested trans-
action is simply considered to be part of the dynamically
enclosing (i.e.,parent) transaction. Thus, a nested transac-
tion does not abort or commit when it is completed; rather,
control simply passes to the parent transaction. Flat nesting
can be implemented with a simple nesting depth counter, so
that we commit only the outermost transactions, which sub-
sumes all nested transactions. Given this simplicity, an initial
implementation should supportat leastflat nesting.

A variety of richer nesting models have been proposed.
For most of them, we believe more research is needed to
achieve robust semantics and implementations, and more
experience is needed to determine whether they are needed
(see Section 3.8 for some examples).

One exception isclosed nesting, in which nested trans-
actions commit or abort upon exit. If a nested transaction
commits, its effects become visible only to the parent trans-
action; if it aborts, the parent transaction “stays alive”,while
the effects of the the nested transaction are discarded. The
nested transaction can then be retried independently of its
parent.

While an initial implementation could provide just flat
nesting, it is likely that we would want to support closed
nesting sooner rather than later. For very basic transactions,
when a nested transaction aborts, we could simply abort the
parent and retry the whole transaction. This is achieved by
simple flat nesting and is indistinguishable from closed nest-
ing apart from possible performance differences. However,
various language features we may want to consider require
“real” closed nesting. For example, if exceptions abort the
transactions they escape (as described in Section 4.2), then

we must abort such transactions, while keeping alive an en-
closing transaction that catches the exception. Similarly, it
may be desirable to be able to explicitly abort a nested trans-
action (see Section 5.2) and either retry it or try an alterna-
tive. Other features such as theorElse construct proposed
for STM Haskell [15] similarly require closed nesting.

3.5 Control flow into, out of and within transactions

We now consider how transactions affect the flow of con-
trol. As long as control stays within (the dynamic extent of)
a transaction, the semantics should be the same as for non-
transactional code, as in existing C++. Thus, we need only
consider when control crosses a transaction boundary.

Entering a transaction

Entering a transaction is mostly straightforward because
transactions are introduced by a structured control construct.
We believe that jumping into the middle of a transaction
should not be allowed. This restriction is unlikely to be a
problem in practice, and it greatly simplifies implementa-
tion: code to set up a transaction can simply be emitted at the
beginning of the code implementing the transaction. Further-
more, we can relax this restriction later, if necessary, without
breaking correct programs for existing implementations.

There are two ways to “jump into” a transaction, viagoto

and vialongjmp. C++ already restricts jumping viagoto
into a compound statement with non-POD variables; it is
simple to extend this restriction totransaction statements.
Sincegoto must jump to a label in the same function, the
compiler can verify that this restriction holds.

It is not so simple, however, forlongjmp, which jumps
to the point of the thread’s most recent invocation ofsetjmp

with the same “jump buffer”, restoring the environment
saved by thatsetjmp (the behavior is undefined if the func-
tion that calledsetjmp has already returned). We want to
allow thelongjmp in each of the following cases:

• the correspondingsetjmp was called within the same
transaction

• it was not called within any transaction

• it was called within some ancestor transaction (i.e.,
longjmp was called in the dynamic extent of the trans-
action that called thesetjmp).

In the first case, no transaction boundary is crossed, so,
by orthogonality, the behavior oflongjmp should not be
changed. In the latter two cases, the thread exits the current
transaction (and possibly others, if the transaction is deeply
nested), but it does not enter any transaction; we discuss the
semantics of exiting a transaction below. In any other case,
doing thelongjmp requires entering a transaction without
executing the beginning of that transaction, which we do not
want to support.

We can distinguish these cases using a simple mechanism
based on unique transaction identifiers, which are present in
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most implementations.setjmp stores the current transaction
identifier (assumed to be nonzero) in the jump buffer; if the
setjmp is not within a transaction, it stores zero instead.
Whenlongjmp is called within a transaction, if the current
transaction identifier is the same as the last one stored in
the jump buffer, then we are in the first case above: no
transaction is entered or exited. If the buffer has a zero
instead, then we are in the second case.

For flat nesting, in which a nested transaction is subsumed
by its parent (and thus does not have a separate transaction
identifier), this covers all the cases we want to allow; if the
buffer contains a transaction identifier other than the current
one, we are in the unsupported case.

To support closed nesting, we can maintain a stack of
identifiers of transactions that have not yet completed (i.e.,
the current transaction and its ancestors), and use this stack
to determine whether the identifier stored in the buffer be-
longs to an ancestor of the current transaction. If so, we are
in the third case above; otherwise, we are in the unsupported
case. If thelongjmp is not within a transaction, then it is an
error unless the jump buffer contains zero.

Exiting a transaction

For exiting a transaction, it is simplest if the transactioncom-
mits: the desired semantics is simply the semantics of an or-
dinary C++ program in which the entire transaction happens
to execute without conflicting with any other threads. Thus,
we mandate this behavior for all “normal” exits. This begs
the question, what constitutes a normal exit? Also, we must
specify what happens when a transaction aborts. In partic-
ular, we must specify which effects are discarded, and what
code is executed after the transaction aborts. We consider the
various ways a thread may exit a transaction.

Reaching the end of thetransaction statement is
clearly a normal exit. Similarly,return, break, continue
andgoto statements are used as ways to control flow within
a single function body, and most C++ programmers would
be surprised if these were not treated as normal exits. Thus,
we choose to commit a transaction that is exited using one
of these statements.

On the other hand,longjmp discussed above is typically
used to abandon a large task without ending the entire pro-
cess. This pattern is inconsistent with committing the trans-
action, so we choose to abort transactions when they exit via
longjmp. We can use the algorithm described above to de-
tect when alongjmp would exit atransaction statement
and abort the appropriate transaction. In this case, all theef-
fects of the transaction are discarded, and thelongjmp is
executed afterwards. The only information transferred outof
the transaction is theint passed as an argument tolongjmp.
Control resumes at the appropriatesetjmp.

A transaction may also be exited by throwing an excep-
tion. This is a more subtle case, and we discuss it in detail in
Section 4.

Finally, a transaction can be aborted due to a conflict
with another thread, or be interrupted by an asynchronous
signal. We believe that the programmer should not worry
about either of these cases: the transaction should be simply
aborted and retried.

In the first case, we cannot choose to commit the trans-
action, since it was already aborted due to the conflict; we
discuss some other variants that allow the programmer to
control whether the transaction is retried in Section 5, but
we believe that the default behavior should be to retry with-
out involving the programmer.

In the second case, we could consider the asynchronous
signal as another way to exit a transaction, but then return-
ing from the signal handler would effectively be jumping
into the middle of a transactional statement, which we have
strived to avoid in general. Alternatively, we could consider
disabling signals for the duration of a transaction, but we be-
lieve that this is impractical. A more pragmatic solution is
to abort the transaction, handle the signal, and then retry the
transaction, as if the signal occurred before the transaction
began. While it is possble to avoid the overhead of retrying
by handling a signal without aborting a transaction that is
executing when it occurs, this would require more sophisti-
cated support from the transactional memory infrastructure
than we would like to require for an initial implementation.

3.6 Privatization

Many transactional memory implementations exhibit the so-
called “privatization problem” [8, 21]: The implementation
allows transactions that have logically completed to modify
a piece of memory that another transaction intended to make
private—for example by removing the last shared reference
to it—and thus safe to access nontransactionally. A particu-
larly troublesome example occurs when the memory is freed
and subsequently reallocated. Clearly is not reasonable to
forbid nontransactional access to freshly allocated memory.

This is primarily an implementation issue, but has some
bearing on the programming interface: some privatization
mechanisms that aim to address this problem require the pro-
grammer toexplicitly say that a piece of memory is now be-
lieved to be private, while others solve the problemimplic-
itly, i.e., without special treatment by the programmer.

The privatization problem was identified only recently.
Early indications are that practical solutions for both implicit
and explicit privatization exist, but implicit privatization en-
tails a significant cost in performance and scalability, which
naturally tempts us to burden the programmer with explicit
privatization. We resist this temptation, requiring implicit
privatization in an initial implementation, for the following
reasons:

• It provides an easier path for programmers to adopt trans-
actional programming styles because it avoids requiring
them to understand a new issue that has no analogue in
traditional concurrent programming.
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• Research on privatization is in its infancy; it is too early
to conclude that its overhead is fundamentally excessive.

• Practical solutions exist, and although they do impose a
performance and scalability cost on transactions, they do
not impose overhead on the rest of the application.

Note that this choice isnot consistent with our desire to
make decisions that we can change without breaking existing
code. Thus, if an explicit privatization model is adopted later,
it should be chosen explicitly (for example with compiler
options), and the system should continue to support implicit
privatization for programs that do not make this choice.

A possible intermediate position is to implement only
explicit privatization, and requirefree to ensure that a block
of memory is privatized before being freed. Programmers
would still be required to avoid nontransactional accessesto
an object that has been accessed by a transaction and not
since freed, but at least nontransactional accesses to freshly
allocated memory would be safe.

Note that an implementation that provides strong atomic-
ity by turning nontransactional accesses into mini-transactions
does not exhibit the privatization problem: there are no non-
transactional accesses. However, many of the optimizations
that can reduce the overhead of strong atomicity also rein-
troduce the privatization problem, so we advise against con-
flating these issues, even if we eventually decide to support
strong atomicity.

3.7 Input/output, system calls, and libraries

Code executed within transactions must generally provide
means for detecting conflicts, as well as for undoing the ef-
fects of the transaction in case it aborts. This means that call-
ing code that has not been compiled to execute within trans-
actions can result in incorrect behavior, especially if such
code has side effects: these side effects may be noticable
even if the transaction aborts. An obvious example is code
that performs I/O: if visible output has already occurred, it
is not possible to abort the transaction and give the impres-
sion that it never executed.

For these reasons, we recommend against supporting
transactions that perform I/O, invoke system calls, or callli-
brary functions that have not been compiled by a transaction-
aware compiler.

Some system calls and library functions (e.g., math li-
brary functions) have no side effects and can therefore be
safely called within transactions, even though they are not
aware of transactions. In other cases, by making the imple-
mentations aware of transactions, we can make them safe to
include in transactions. In other cases, we will likely wantto
forbid certain system and library calls in transactions forthe
forseeable future. Similarly, some kinds of I/O can be sup-
ported within transactions (for example, a transactional file
system appropriately interfaced with the transactional mem-
ory implementation can allow file I/O within transactions).

In an initial implementation, we might impose the rule
that none of these features can be used within transactions,
and leave behavior undefined if this rule is broken. As the
implementation becomes more mature, it will be important
to provide support to help the programmer avoid breaking
these rules. Over time we can provide increasingly robust
support for flagging errors (for example, we might imple-
ment runtime error messages first and later provide support
for compile-time checking of conformance to the rules). We
might also relax the rules over time, as more system calls
and library functions are certified as “safe to call” or if oper-
ating system or library changes are made to make them safe.
Observe that each step in such a progression can be made
without breaking existing correct code.

While a variety of techniques for allowing I/O within
transactions are known for a variety of contexts, it does not
seem possible to have a general solution that covers all cases
and does not introduce significant detrimental interactions
with other features and with performance. Therefore, it is
preferable to gain experience with limited models that do
not allow I/O in order to learn whether supporting I/O in the
long run makes sense, and if so what kinds of I/O for what
kinds of applications. Given the tradeoffs that are inevitably
introduced by attempting to support I/O in transactions, it
does not make sense to impose a choice in this regard with-
out clear guidance.

3.8 Other advanced features

A host of features have been proposed for use in transactions.
It is clearly undesirable and probably infeasible to support
them all simultaneously, and many of them introduce trade-
offs that we should not make without clear guidance that
the feature is needed. Therefore, we recommend against sup-
porting any of these more advanced features initially, so that
we may gain experience and make informed decisions about
whether and how to support them later. We briefly discuss
a few such features below. In all cases, we are comfortable
with our decision to omit such features initially, because they
can be added later without breaking existing code.

As mentioned earlier, richer language features have been
proposed that provide additional flexibility beyond what ba-
sic transactional statements allow. For example, theretry

andorElse constructs of Haskell STM [15] allow program-
mers to express alternative code to execute in case a (nested)
transaction aborts, to wait until some condition holds before
proceeding, etc. It may make sense to support similar fea-
tures in C++ in the future, but not initially.

Open nestingallows a nested transaction to commit or
abort independently from its parent. A good discussion of
why open-nested transactions might be useful can be found
in [4]. Open nesting significantly complicates the semantics
of transactions, however, because open-nested transactions
violate the all-or-nothing guarantee: An aborted transaction
may have effects that are visible to other threads because
it may include open-nested transactions that commit. Sim-
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ilarly, a committed transaction may not appear to execute
atomically because it may include open-nested transactions
that commit, and make their effects visible to other threads,
before the parent transaction commits (or aborts). Designing
open nesting semantics that enables the desired functionality
without giving up many of the benefits of transactions is an
active area of research, and there is not yet agreement about
what the right trade-offs are.

We also recommend against allowing parallelism within
a transaction in an initial implementation; each transaction
should be executed by a single thread. There are three rea-
sons for this recommendation. First, although many C++
programs are concurrent, concurrency is not native to the
language, and creating a new thread is a relatively heavy-
weight operation. C++ programs tend not to create threads
liberally, but instead create enough threads to provide the
desired parallelism and then coordinate their execution with
locks and other synchronization mechanisms. Transactional
memory in C++ serves that same purpose. Second, research
on transactional memory thus far has been primarily for
single-threaded transactions. Well developed proposals for
efficient transactional memory implementations that support
parallelism within transactions do not yet exist, and the cost
of supporting such seems likely to be high, at least in the near
term. Third, similar to open nesting, parallelism within trans-
actions introduces many semantic issues, particularly with
respect to the nesting model. We believe that eventually it
may be important to support parallelism within transactions,
but not yet, at least not for C++.

4. Exceptions
Exceptions present a challenge in the integration of trans-
actional memory into C++. On one hand, exceptions are
intended to handle errors that cannot be handled locally
when they are discovered. The design principle in C++ is
that exceptions should be rare, that they indicate failure,
and that the purpose of exception handlers is to restore in-
variants; this principle is embodied in such notions asex-
ception safety[44]. This is similar to the original purpose
of transactions: aborting a transaction discards its effects,
restoring any invariants that hold outside of transactions;
manual restoration of invariants seems redundant. Thus, pre-
dictability suggests that transactions terminated by excep-
tions should abort.

On the other hand, an exception in C++ may throw arbi-
trary objects, which carry information from the point of the
throw to the exception handler. In particular, these objects
may contain pointers or references to objects allocated or
modified in a transaction to a point outside the transaction.
If a transaction aborts when it is terminated by an exception,
then the information in the exception may be lost. Indeed, if
all the effects of a transaction are discarded, then referenced
objects that were constructed within the transaction would
no longer exist, and the references would be dangling, vio-

lating the expectations of C++ programmers. This problem
is avoided if transactions terminated by exceptions commit.

Thus, aborting transactions is a natural fit to theuseof
exceptions in C++, but causes problems for the exception
mechanism. We find the disadvantages induced by either
committing or aborting transactions terminated by excep-
tions to be significant enough that we believe more expe-
rience is needed before settling on a solution. And if we
choose to abort such transactions, we must still decide which
effects are discarded.

Because of the challenges involved in determining how
exceptions should interact with transactions and (in some
cases) of implementing the desired behavior, it may be de-
sirable to simply disallow exceptions within transactionsfor
an initial implementation. For many applications, this re-
striction is of little consequence, especially if violations of
this rule can be detected and reported, preferably at compile
time. Thus, we should not wait to make a final determination
on this issue before releasing an initial implementation and
encouraging experimentation with it. In the rest of this sec-
tion, we discuss some alternatives for integrating exception
support in the future.

4.1 Exceptions Commit

This option is the simplest: Committing transactions when
an exception leaves thetransaction statement leaves the
exception mechanism unchanged in both semantics and im-
plementation. Ringenburg and Grossman [39] favor for this
approach for their AtomCaml language. However, different
approaches are appropriate for different contexts. Commit-
ting a transaction that throws exception seems counter to
the intended use of exceptions in C++ as a mechanism to
deal with failure and restore invariants. This intention isnot
merely a de facto standard; it is an explicit design rule of
C++ [23, 44]. Since an exception signals failure of some
assumption, it may occur when the transaction has made
the state inconsistent, relying on the guarantee that no other
threads will be able to see that inconsistency.

If the programmer must explicitly restore any invariants
that may have been violated when an exception was raised,
additional code will be required to do the restoration, and
perhaps also to record the effects of a transaction innormal
execution in order to facilitate the restoration. This seems to
be a poor choice when the transactional memory implemen-
tation can perform the task automatically and transparently.
Worse, other transactions will be able to observe the interme-
diate state between the commit of the transaction that throws
the exception and the commit of the transaction that restores
the invariant. This severely undermines the power of trans-
actions for simplifying programs by enforcing invariants.

4.2 Exceptions Abort on Exit

If a transaction terminated by an exception is to be aborted,
the most natural approach is to abort it when the exception
leaves thetransaction statement. However, it still leaves
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the thorny issue of what to do about the object thrown by the
exception in the default case when the transaction is aborted.

The object thrown is not itself a problem: the exception
mechanism already requires distinct memory allocation, so
we can simply make these writes not part of the transaction;
they occur immediately after the transaction aborts, and just
before the object is thrown. In this sense, this solution is
the one described above forlongjmp, where aborting did
not cause any problems because only an integer is passed
from the point of thelongjmp to the point of thesetjmp.
The problem occurs if the exception object contains pointers
or references to other objects, particularly ones allocated or
modified in the transaction.

The simplest possibility is to forbid throwing objects with
pointers or references. This is not as restrictive as it might
seem at first: although C++ exceptions may throw arbitrary
objects, in practice, most exception objects are chosen from
a conventional class hierarchy. The most likely case of an
exception object with pointers is astd::string, as in:

std::string x( "hello" );

throw x;

The normal course of action is to copy constructx into the
exception memory. This copy construction may involve a
call to new, because strings are generally indirect objects.
Worse, the string may be indirected to a reference-counted
object: copying the object involves incrementing the refer-
ence count, while aborting the transaction involves rolling it
back, resulting in an incorrectly built object in the exception
memory.

Note that the compiler cannot always detect violations
of a rule forbidding throwing objects containing pointers
(because exceptions are a dynamic construct). Therefore,
if we chose this rule, we would make no guarantees about
pointers or references in exception objects thrown out of a
transaction. A disadvantage of this approach relates to our
desire for incremental adoption and predictability: it would
be easy to call some legacy code that potentially throws
a complex object; the error would not be caught by the
compiler and the behavior would be unpredictable.

Another possibility is to copy the objects referenced by
the exception object. If we do only a shallow copy, then all
the problems remain behind one level of indirection, though
solving the problem for one level of indirection may be
sufficient to address the vast majority of uses in practice. On
the other hand, a deep copy may be prohibitively expensive,
especially if the copied objects must reside in the exception
memory. Thus, we do not find this possibility very attractive.

A third possibility is to allow pointers and references to
other objects, and to discard all the effects on objects that
were not allocated within the transaction. However, objects
allocated within the transaction would still remain, and so
there would be no dangling references. This is essentially the
approach proposed for STM Haskell [15], and we believe it
worth considering. One possible shortcoming is that exam-

ining the exception object may be confusing because it may
not be self-consistent: objects allocated within the transac-
tion will reflect the effects of the transaction, while objects
not allocated within the transaction will not.

4.3 Exceptions Abort on Throw

Another approach is to exploit the idea that exception han-
dlers and transaction aborts are both “fixing mistakes”, and
rely exclusively on the transaction mechanism. Specifically,
abort the transaction at the point of throw when the handler is
determined not to be within the same transaction; no excep-
tion is thrown at all. Automatically retrying the transaction
in this scenario is probably inadvisable, so we must specify
where control resumes after the transaction aborts. We can
do this by adding a clause to thetransaction statement:

transaction statement[ exception statement]

This approach will lead to smaller transaction bulk and
better performance. However, it makes it difficult to deter-
mine cause: the only information one can get from a throw-
aborted transaction is that it aborted via throw. This approach
may be fine as long as one follows the “exceptions are indi-
cations of program failure” design rule of the C++ standard,
but again, experience is necessary to assess this.

A slightly more powerful variant is to allow passingsome
information, whose type is restricted by the syntax, to the
exception clause. For example, we might allow the pro-
grammer to bind one integer variable, which is accessible in-
side thetransaction statement and theexception clause,
and will not be rolled back if the transaction aborts. The pro-
grammer can use this variable to pass simple information out
of an aborted transaction to theexception clause, while the
exception mechanism can avoid the complication of dealing
with arbitrary thrown objects.

4.4 Overriding defaults

One consideration in evaluating the tradeoffs discussed
above is how easy it is to override the default behavior. For
example, if the default behavior is for exceptions to abort on
exit, programmers can easily cause the transaction to com-
mit when appropriate, as in:

{

SomeType throwthis = NULL;

transaction {

try {

// code that might throw an exception

} catch (SomeType e) {

throwthis = e;

}

}

if (throwthis)

throw throwthis;

}
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This idiom provides a reasonable emulation of the alter-
native semantics, but is not seamless. For example, catching
the exception inside the transaction and throwing it outside
would lose useful information such as stack traces, which
would interfere with debugging.

Similarly, given explicit abort (see Section 5.2), we can
catch an exception and explicitly abort the transaction. Thus
the choice between these options is mostly concerned with
common-case performance and the semantics most likely to
be appropriate. In contrast, ifthrowing an exception aborts
the transaction, we do not have such flexibility.

5. Variants and Idioms
Beyond the basic design for integrating transactional mem-
ory into C++, there are additional features that may be useful
to provide, and some idioms that provide useful functional-
ity. We discuss some of these in this section.

5.1 Programmer-directed contention control

In the basic design discussed thus far, the system is responsi-
ble for arbitrating conflicts between transactions. If a trans-
action aborts due to conflict with another transaction (or an
asynchronous signal), it is simply retried. To avoid livelock,
the system must have some mechanism to facilitate progress,
for example by managing contention so that each transaction
eventually executes without conflict. An alternative (or ad-
ditional) possibility is to provide the programmer a hook for
detecting and dealing with transactions that abort for some
reason. A simple such hook is a clause for thetransaction

statement, such as:

transaction statement[ failure statement]

The programmer can use thefailure clause to imple-
ment some simple functionality that restricts the number of
retries, or tries an alternative transaction upon failure,etc.

Note, however, that the existence of such a hook need not
imply that the system will always execute the statement in
thefailure clause when the transaction is aborted: Because
the effects of the aborted transaction are discarded, the sys-
tem may retry the transaction before ceding control to the
programmer. Similarly, we should not be tempted to over-
specify the circumstances under which thefailure clause
may be invoked: different implementations have different
reasons for failing transactions. The main point is to give
control to the programmer eventually in case the transaction
(repeatedly) fails to complete.

The failure clause should not be conflated with the
exception clause from the “abort on throw” option for
exceptions; the desired behavior in these cases are likely to
be quite different.

5.2 Explicit abort

It can be useful to provide a way for the programmer to
explicitly abort a transaction. For example, such a mecha-
nism enables a convenient style for programming a task that

should be done only if a certain condition is met, and de-
termining that condition involves doing much of the task.
Rather than testing the condition and then redoing much of
the work if the task needs to be done, the programmer can
simply start doing the work in a transaction and then abort
the transaction if the condition is not met.

If exceptions abort transactions, they could be used for
this purpose. However, regardless of how we eventually de-
cide to handle exceptions, it may still be better to provide a
separate mechanism for explicitly aborting transactions,es-
pecially if exceptions abort on throw: the behavior desired
when a transaction is explicitly aborted is likely to be quite
different from that desired when a truly unexpected event
occurs. For exceptions that abort on exit, the need for a sep-
arate mechanism is less clear because we can easily distin-
guish the cases by using a special kind of exception for an
explicit abort. However, if explicit abort is intended as anal-
ternate means of ordinary control flow (likebreak), then by
the C++ design principle that exceptions indicate program
failure, an exception should not be used for this purpose.

Therefore, we believe that we will eventually want to
support explicit abort. The behavior of explicit abort may
depend on the nesting model implemented. For example,
with flat nesting, the obvious behavior is to undo the ef-
fects of the entire transaction, and resume execution after
the aborted transactional statement. With closed nesting,it
may be desirable to abort only the current (nested) trans-
action and resume execution of the parent transaction. To
avoid breaking existing code when introducing closed nest-
ing, and to allow the programmer to express both kinds of
aborts, the programmer should express “abort to the top”
and “abort this (nested) transaction” differently, for exam-
ple withabortAll andabortInner keywords.

We note that it is not necessary to explicitly support an
indication of whether a transaction was aborted, because this
can easily be achieved using an idiom like the following one:

{

int aborted = true;

transaction {

aborted = false;

...

}

if (aborted) {

...

}

}

5.3 Passing an argument to atransaction statement

We also considered allowing an “argument” to be passed to
atransaction statement, such as

transaction (x) statement

Effects on this variable wouldnot be discarded if the trans-
action aborts, so it can be used to implement much of the
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functionality described above. This feature would be espe-
cially helpful in a system intended primarily for exploration
of various options, and in that case, we may want the argu-
ment to be avoid pointer, so that we can easily adapt the
system. However, such an open-ended mechanism is proba-
bly not appropriate as the final point in a language design.

6. Conclusion
We have summarized the main issues that must be addressed
for a pragmatic initial integration of transactional memory
into C and C++, aimed at supporting incremental develop-
ment and adoption. Our goal has been to explore the design
choices for integrating transactions into these languagesin a
way that will be natural for programmers who use the preva-
lent coding styles in C and C++.

To support transactions in C and for C-like data types in
C++, a word-based transactional memory implementation is
most appropriate, and this naturally leads to atransaction

statement as the primary syntax for expressing transactions.
For C, the trickiest issue is how to handle I/O in transactions,
if at all, while C++ provides additional challenges, particu-
larly related to exceptions.

This paper narrows the design space on a number of is-
sues, but leaves open reasonable alternatives for others. Fu-
ture work includes implementing and experimenting with
some of these alternatives, allowing use and experience
to guide us towards successful integration of transactional
memory into the C and C++ standards, as well as successful
use of these features by programmers.
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