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Abstract

We discuss the integration dfansactional memoryinto

the C++ programming language. We take a decidedly prag-
matic approach in this paper: Our goal is to induce minima
changes consistent with implementability, usable transac

tional semantics, and the prevalent styles of C++ programs.
In particular, we want to avoid designing a new language;

rather, we want to enable incremental adoption of transac-
tional memory into existing C++ code bases. The contribu-

tion of this paper is a careful analysis of the options rather

than a final solution. In some cases, reasonable altersative
exist and experience in implementation and use must guide
the final choice.

1. Introduction

Dan Nussbaum

Sun Microsystems Laboratories
dan.nussbaum@sun.com

locking overhead and significantly increased programming
complexity, which makes applications harder to understand
debug, and maintain. Furthermore, operations implemented

| with locks cannot be directly composed with each other, a

significant disadvantage for software engineering.

In reaction to these problems, ttransactionalmodel of
synchronization has received attention as an alternative p
gramming model. In transactional programming, code that
accesses shared memory can be groupedtiatsactions

which are intended to be executed atomically: operations of

different transactions should not appear to be interleated

transaction magommit in which case all its operations ap-

pear to take place atomically, abort, in which case its op-

erations appear not to have taken place at all. If two trans-
actions conflict—that is, if they access the same object, and
at least one of them writes it—then the conflict must be re-

With the advent of chip multiprocessors, it is increasingly splved, often by aborting one of the transactions. An aklorte
important for software to make effective use of parallelism trgnsaction is typically retried until it commits, usualy-

to exploit advances in technology. Thus, programmers mustter taking some measures to reduce contention and avoid
increasingly learn to write concurrent programs. This will fyrther conflicts. System support for transactions has been
not be easy: programmers today typically rely on a combi- jnyestigated in hardware [2, 13, 20, 34, 35], in software
nation of locks and conditions to prevent concurrent access[14, 15, 18, 24, 30, 40, 33, 43], and in schemes that mix
by different threads to the same shared data. Although thishardware and software [6, 25, 27, 34, 38].

approach simplifies reasoning about interactions by afigwi
programmers to treat sections of code as “atomic’, it saffer
from a number of shortcomings.

First, data and locks are associabgdconventiopfailure
to follow the convention is a common source of subtle bugs

In this paper, we discuss the integration of transactional
memory into the C [22] and C++ [23] programming lan-
guages. We concentrate our discussion on C++, because the
issues for C++ are a superset of those for C.

We have two pragmatic goals for our design:

that are hard to reproduce and hard to diagnose. When the

convention is followed correctly, it is common to lock too
conservatively, resulting in poor performance. Locks aiso
troduce a difficult granularity tradeoffoarse-grainedocks
use fewer locks for more data, generally resulting in sim-
pler code but poor scalabilitfine-grainedocks protect less
data, resulting in better scalability, at the cost of addiil

* © Sun Microsystems, Inc., 2007. All rights reserved.
T Work done while at Sun Microsystems, Inc.

useful to working programmers Transactions should be
integrated into C++ in a way that is usable by every-
day programmers. When considering various options for
integration, we attend not only to the semantics of C++,
but also to the prevalent styles of C++ programming.
In particular, we consider it important that programmers
can begin to use transactions gradually in existing code
bases, rather than having to write entire transactional ap-
plications from scratch. Such attention is crucial for the
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result to be useful in practice: adoption of transactional efficiency Transactions should not induce unacceptable
memory will almost certainly be incremental. overhead, particularly in parts of the code that do not

sooner rather than later Several subtle issues that arise in handle exceptions or use transactions.

integrating transactional memory into C++ cannot be  The contribution of this paper is a careful analysis of the
fully resolved without experience in implementation and options, rather than a final solution. In some cases, reason-
use. Furthermore, many facets of transactional memory able alternatives exist; experience in implementationueed
design have not been thoroughly explored, and we would must guide the final choice.

similarly benefit from experience in implementation and

use. To gain such experience, we prefer an experimen-2, Background

tal implementation sooner rather than a highly developed
implementation later. An early implementation makes
it possible to gain crucial experience in preparation for
more comprehensive solutions. As such, our integration
with C++ should prefer minimal language changes con-
sistent with implementability.

Transactional memory is adapted from the notion of trans-
actions in database systems [11], which were originally de-
signed to simplify error handling while protecting datarfro
corruption: Instead of figuring out what went wrong and re-
pairing the damage when an error or some other unexpected
situation arises, the transaction is simply aborted arap-f
. . .__propriate, retried.

To begin, we enumerate several desiderata for our design: In a concurrent system, transactions have two additional

B ) ] benefits: By guaranteeing an all-or-nothing semanticastra

composability Transactions should compose, which means ,(ions insulate different parts of a program from eachrothe

they must be nestable, because transactions might be bez g increase the granularity of atomic actions. Thus, they
hind abstraction boundaries such as functions or Classes-provide a kind of modularity for concurrent programs that

minimality We should minimize changes to the language, reduces the possible behaviors of concurrent programs, and
introducing as few new features as possible and preserv-thus simplifies reasoning about them. Also, the ability to re
ing the style of C++ programming. cover from errors by aborting transactions enables a simple
but powerful way to manage contention: Rather than ensur-
ing that a transaction experiences no conflict (by holding
) : . locks for shared data, for example), we can optimistically
orthogonality Consequently, where possible, transactions gqqyme that it will not, and then check this assumption be-
should be orthogonal to other language mechanisms.  ¢,re committing the transaction. If conflict did occur, weica
implementability Transactions should be within reach of simply abort and retry the transaction.
current implementation technology. Although we do not Herlihy and Moss [20] first proposdthnsactional mem-
discuss implementation details for most of the issues cov- ory as a hardware mechanism leveraging caching and the
ered in this paper, practical implementability has guided cache-coherence protocol to provide small transactions.
our deliberations. Shavit and Touitou [42] introducesioftware transactional
incremental developmentWe generally prefer to omitany ~ Memory and gave a nonblocking implementation for it, but
feature that can be added later without breaking correct ©"€ that_was too inefficient and inflexible to be practical,
existing code if we are not sure the feature is needed, or@nd the idea lay fallow for almost a decade. Interest was
believe more experience is needed before deciding how "€ignited by converging developments in both software and

to best include the feature. Similarly, the treatment of in- nardware. , ,
correct programs can be improved over time; for exam- N hardware, Rajwar and Goodman exploited specula-

ple, we might allow undefined behavior given a certain tion machinery to elide the acquisition of locks for criti-
programming error in an early implementation, and later cal sections that encountered no confli_ct [36, 37]. Several
add support for reporting illegal behavior when it occurs, other research groups also used caching and speculation,

and later still add compiler support for preventing such @nd proposed new mechanisms, to provide other transac-
behavior. tional behavior, either explicitly or “behind the scenesy.,

. . , ) , [2, 13, 32, 34, 38], and many others). In software, Herlihy

incremental adoption We should avoid barriers to begin- g 5 [18] introducediynamic software transactional mem-
ning to use transactions. Thus, we eschew designs thaly.y, \which was plausibly efficient and flexible enough to
impose significant overhead on code that does not use ,qq in practice. They achieved this by usioigstruction-
transactions, as well as designs that require recompila-greedom[16], a weak notion of nonblocking progress, that
tion of code not used in transactions (for example, 1€9acy separates out the conditions necessary to guarantee safety

predictability The mechanisms of transactions should have
effects that are predictable by ordinary programmers.

libraries). and enable progress from those used to guarantee progress
scalability The base mechanisms should allow applications in practice. The latter can be provided by separable con-
to scale reasonably. tention management mechanisms, which have since been ex-
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plored by several researchers, particularly at the Uniyers  for all non-POD types—that privilege is reserved for poly-
of Rochester [12, 28, 30, 41]. Harris and Fraser provided the morphic types. Thus, taking an object-based approach would
first language-level and run-time support for transactiona preclude transactional manipulation of many common data
memory [14]. Since then, transactional memory has been atypes. We chose the word-based approach for this reason.
hot topic of research, both in academia and industry, result ~ We considered adopting a combined approach, leveraging
ing in many advancements and new directions for hardware,the object infrastructure for polymorphic non-POD types,
software, and combinations thereof (e.g., [1, 5, 6, 7, 8, 10, and using a word-based transactional memory for POD types
15, 17, 31, 40, 45] and many others). and non-polymorphic non-POD types. However, this would
In designs of transactional memory, a central question to introduce significant complexity to the design, introdggcin
ask is: What is the basic unit of data for the transactional many new issues about how the two approaches interact,
memory? For hardware, this is primarily a question of gran- contradicting our principle of minimality.
ularity. However, for software, it is also a question about
the underlying infrastructure. In particular, we distirgju

object-base@ndword-basedransactional memory. ) ] )

Object-based transactional memory [9, 17, 19, 29, 31] re- Having decided on a word—pased transacuongl memory, we
lies on the underlying object infrastructure provided by im need.a control construct to introduce transactions. Weechos
the simplest and most natural construct for C/C++: a new

ment, which we designate using the keyword
1

3.2 Transactional control construct

plementations of object-oriented languages. This apjprizac
attractive because much of the work required to implement €ONtrol state
transactional memory can leverage the object infrastragty ~ transaction:
which typically already maintains metadata about the dbjec
and mediates access to those objects. Thus, object-based sy
tems can provide transactional access with relativellelitt  Typically, statementwould be a compound statement. The
additional overhead over the cost of nontransactionalsacce transaction endS, either Committing or aborting, when con-
Also, the language may also provide type safety guaranteesro| exits the statement. Deciding when it should commit and
that a transactional memory implementation can leverage towhen it should abort is a major aspect of the design, which
ensure certain properties of data that can be accessed transye discuss in Section 3.5. By the orthogonality principle,
actionally. the semantics of code executed within a transaction should,
In contrast, a word-based system is based on transactionss much as possible, be the same as if it were executed out-
over actual memory, not the abstractions that might be rep- side a transaction. However, full orthogonality is not poss

resented by that memory. In this sense, all proposed hard-ple; we discuss various operations and their usability iwith
ware transactional memory systems are word-based (how-ransactions below.

ever, hardware transactional memory implementationsofte Like other structured control constructsygansaction
manage data at the granularity of a cache line). A word- statement introduces a new local scope: variables declared
based software transactional memory without specialized oyside atransaction statement are accessible within the

hardware support must typically maintain its metadata-sepa statement, but those declared within the statement are not
rate from the data being accessed by the transactions, and ingccessible outside the statement.

sert code around every memory access to maintain the meta-  However, unlike most C++ structured control constructs,

transaction Statement

data and detect conflicts. it does not make sense fortaansaction statement to af-

_ _ fect only the code in its static extent: doing so would prahib
3. Basic Design the use of function calls within such statements, a severe re
3.1 Object-based vs. word-based approaches striction. Instead, aransaction statement must apply to

all code executed within its dynamic extent. In this waysit i

When integrating transactional memory into C++, we have gimijar g thetry statement, which affecthrow statements

to choose between an object-based approach and a wordyitin its dynamic extent. This similarity is not surprigin

based approach. As discussed earlier, an object-based apsecayse transactions and exceptions are both intended for
proach might leverage C++'s existing class mechanism, and esyricting and recovering from anomalous execution. This

would likely introduce less overhead. This is the approach o ejap in intended purposes makes the interaction between
taken, for example, for the Rochester Software Transaaiion g4 ctions and exceptions more interesting, and wesliscu

Memory Runtime [31].

However, C++ supports both object-oriented program-
ming and the traditional procedural programming style of
C. For efficiency and compatibility with C, the C++ stan- 1We do not useatomic as a keyword because the 1ISO C++ standards
dard [23] distinguishes two kinds of data typ&OD (i e committee has a well developed proposal to atsemic as the name for a
ol » S predefined template for machine-level atomic operations ssittiad, store,

plain old data”) andnon-POD C++ does not maintain an  fetch-and-add, and compare-and-swap. Thus, usingic as the keyword

object infrastructure for POD types, and indeed, not even would likely conflict with the next release of the C++ startiar

issues that arise in Section 4.
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The transaction statement is not quite sufficient: it 3.3 Strong vs. weak atomicity

cannot express that a constructor with a member initializer on important issue concerns the interaction between transa
list should be executed atomically. Thatis, in the con$tuc  tjons and nontransactional memory accesses, i.e., thase no
myclass: :myclass() : executed inside a transaction. One possibility is to prvid
membervar (30), another(20) { ... } strong atomicity3], which guarantees that nontransactional
o memory accesses are atomic with respect to transactions.
the member initializations are not part of a statement and |jpjementations that do not make this guarantee are consid-
hence cannot be wrapped bytaansaction statement.  gred to providaveak atomicityin which weak or no seman-
Still, because constructors may execute arbitrary code, th e guarantees are made if the same memory locations are
programmer might want the member initializations and the concurrentlyaccessed by transactions and by nontransac-

body of the constructor to be executed atomically using a tional memory accesses, essentially requiring programmer
transaction. A similar problem arises with catching excep- g avoid such behavior.

tions_ in member intializations, Whic_h is solved by insegtin Strong atomicity provides simpler semantics, and thus

try into the constructor syntax, as in, for example: is preferable if we can achieve it efficiently. This is possi-

myclass: :myclass() try : ble with appropriate hardware support, or in an object-thase
membervar (30), another(20) { ... } software transactional memory, where all memory accesses
catch ( ... ) { ...} can be mediated by a run-time system (i.e., in a managed

) language). One conceptually simple approach is to treat any
We adopt the analogous solution to enclose a constructor'spontransactional memory access as a single-access transac
member initializations and body within a transaction. That tjon, However, in C and POD C++, without special hardware
IS, we can write: support, we generally cannot transform a nontransactional
access into a transactional access at run time.

An alternative is to recompile all code, transforming all
ordinary memory accesses into short transactions. This ap-
An alternative to usingransaction statements for in-  Proach has two significant problems. First, transformirig al
troducing transactions is to support “transactional fiomst” ordinary memory accesses into transactions imposes signif
that is, functions whose call and return are the boundaries!Cant overhead on thentire application, not just the parts -
of a transaction. Such a function would be convenient for that use transactions. While optimizations may reduce this
defining a transaction that returns a value. However, al- ©V€rhead, even very aggressive optimization is unlikely to
though transactional functions can be implemented with €liminate it entirely, and in any case is incompatible with

transaction Statements, because functions may be granted ©Ur goal of achieving initial implementations sooner rathe
friend access to some classes: splitting out a block of code than later.

into a separate function may make critical variables inscce Second, requiring recompilation of all code is not com-
sible to that code. patible with our desire to support incremental adoption: we

In addition, function boundaries are too coarse. In partic- Would like to enable programmers to start using transastion
ular, argument evaluation is not considered part of thedall  While only recompiling the code that uses transactions or
function, so transactions that desire to include the argume ™MaY be called from within transactions. _
evaluation must be moved to the calling function. For exam-  With most transactional memory implementations, as

myclass: :myclass() transaction :
membervar (30), another(20) { ... }

ple, given a transactional functiah in the function call long as it is guaranteed that no variablecsncurrently
accessed both by transactions and by nontransactional ac-
f(x++) ; cesses, there is no problem. This raises the question of

how to follow this rule. Static methods for enforcing this
the increment ok is not part of a transaction. With trans-  rule—for example based on having transactional and non-
actional functions, there is no mechanism for including ar- transactional types—are too inflexible. The approach would
gument evaluation in the transaction without rewriting the be analogous to the familiar C++ problem of introducing
surrounding code, splitting out the call into a separatefun  const qualification into a program written withoudbonst:
tion. On the other hand,taransaction statementcan easily  the introduction of oneonst qualifier may require its in-

include or exclude the argument evaluation. troduction in every function header in a call chain, which
is sufficiently disruptive that it has earned the teconst
tmp = x++; transaction{ f(tmp); } poisoning Dynamic solutions have been proposed that aim
// args not subsumed to handle these issues transparently to the programmer [26]
transaction{ £( x++ ); } // args subsumed but these impose some overhead on all code, not just trans-

Therefore, by the principle of minimality, we omit trans- actions, and are not sufficiently mature for inclusion in an

actional functions from our initial design.
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initial implementation, especially because, as develgmed we must abort such transactions, while keeping alive an en-
far, they assume an object infrastructure. closing transaction that catches the exception. Simijlarly
Primarily for these reasons, we decided to require pro- may be desirable to be able to explicitly abort a nested trans
grammers to follow the rule that forbids concurrent transac action (see Section 5.2) and either retry it or try an alterna
tional and nontransactional accesses to the same data, bufve. Other features such as theElse construct proposed
not to enforce it, thereby allowing transactional memory for STM Haskell [15] similarly require closed nesting.
implementations that do not enforce strong atomicity. Al-
though this approach is less safe, we believe thatis censist 3-5 Control flow into, out of and within transactions
with the spirit of C/C++ programming. Furthermore, tools We now consider how transactions affect the flow of con-
to help programmers avoid and/or detect violations of the trol. As long as control stays within (the dynamic extent of)
weak atomicity rules may eventually be successful enough a transaction, the semantics should be the same as for non-
that strong atomicity is not required. transactional code, as in existing C++. Thus, we need only

Choosing not to support strong atomicity initially is con-  consider when control crosses a transaction boundary.
sistent with our goals of incremental development and adop-

tion. We can decide later based on experience whether strong=ntering a transaction

atomicity is needed and programs that are correct undergntering a transaction is mostly straightforward because
weak atomicity will remain correct if strong atomicity is  transactions are introduced by a structured control coaistr
adopted. We believe that jumping into the middle of a transaction
3.4 Nesting should not be aII_owed. This restricti(_)n is_ _unli_kely to be a
The desi defined ab ) ithi problem in practice, and it greatly simplifies implementa-
€ desire t_o US€ programmer-getined a stractions W't_ N Qtion: code to set up a transaction can simply be emitted at the
transaction implies the need to permit nested transactions beginning of the code implementing the transaction. Furthe

Otherwise, the use of a transaction as an implementation de'more, we can relax this restriction later, if necessanfouit

tail would be exposed in the interface. Basic composition ca breaking correct programs for existing implementations.

be achieved with simpltat nestingin which a nested trans- There are two ways to “jump into” a transaction, gisto
action is S|mply considered to be part of the dynamically 4 vialongjmp. C++ already restricts jumping vigoto
e_nclosmg (i.e.paren) transat_:hon. Th_u_s, a nested transac- into a compound statement with non-POD variables; it is
tion does not abort or commit when it is completed; rather, simple to extend this restriction toransaction statements.

control simply passes to the parent transaction. Flatmgsti Sincegoto must jump to a label in the same function, the
can be implemented with a simple nesting depth counter, Socompiler can verify that this restriction holds

that we commit only the outermost transactions, which sub- It is not so simple, however, fdrongjmp, which jumps

fsun?es all ne_sted ';]ranlzactlons. (.|§|venﬂth|s S|m_pI|C|ty, amin to the point of the thread’s most recent invocatios et jmp
'mp eme_ntanfn_shou suppa{t e(;islt a;]tnesgng. q with the same “jump buffer”, restoring the environment
A variety of richer nesting models have been proposed. saved by thaget jmp (the behavior is undefined if the func-

ForrTmost Ot]; them, we t_)eheve dmorei researgh IS nee(;jed ©fion that calledset jmp has already returned). We want to
achieve robust semantics and implementations, and more,;, .. thelongjmp in each of the following cases:

experience is needed to determine whether they are neede
(see Section 3.8 for some examples). e the correspondinget jmp was called within the same
One exception i€losed nestingin which nested trans- transaction
actions commit or abort upon exit. If a nested transaction e jt was not called within any transaction
commits, its effects become visible only to the parent trans
action; if it aborts, the parent transaction “stays alivéijle
the effects of the the nested transaction are discarded. The
nested transaction can then be retried independently of its
parent. In the first case, no transaction boundary is crossed, so,
While an initial implementation could provide just flat by orthogonality, the behavior dfongjmp should not be
nesting, it is likely that we would want to support closed changed. In the latter two cases, the thread exits the durren
nesting sooner rather than later. For very basic trangagtio  transaction (and possibly others, if the transaction iplyee
when a nested transaction aborts, we could simply abort thenested), but it does not enter any transaction; we discess th
parent and retry the whole transaction. This is achieved by semantics of exiting a transaction below. In any other case,
simple flat nesting and is indistinguishable from closed-nes doing thelongjmp requires entering a transaction without
ing apart from possible performance differences. However, executing the beginning of that transaction, which we do not
various language features we may want to consider requirewant to support.
“real” closed nesting. For example, if exceptions abort the  We can distinguish these cases using a simple mechanism
transactions they escape (as described in Section 4.2), the based on unique transaction identifiers, which are preaent i

e it was called within some ancestor transaction (i.e.,
longjmp was called in the dynamic extent of the trans-
action that called theet jmp).
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most implementationset jmp stores the current transaction
identifier (assumed to be nonzero) in the jump buffer; if the
setjmp is not within a transaction, it stores zero instead.
Whenlongjmp is called within a transaction, if the current
transaction identifier is the same as the last one stored in
the jump buffer, then we are in the first case above: no
transaction is entered or exited. If the buffer has a zero
instead, then we are in the second case.

For flat nesting, in which a nested transaction is subsumed

Finally, a transaction can be aborted due to a conflict
with another thread, or be interrupted by an asynchronous
signal. We believe that the programmer should not worry
about either of these cases: the transaction should beysimpl
aborted and retried.

In the first case, we cannot choose to commit the trans-
action, since it was already aborted due to the conflict; we
discuss some other variants that allow the programmer to
control whether the transaction is retried in Section 5, but

by its parent (and thus does not have a separate transactiome believe that the default behavior should be to retry with-

identifier), this covers all the cases we want to allow; if the
buffer contains a transaction identifier other than theemuirr
one, we are in the unsupported case.

To support closed nesting, we can maintain a stack of
identifiers of transactions that have not yet completed, (i.e
the current transaction and its ancestors), and use tluk sta
to determine whether the identifier stored in the buffer be-
longs to an ancestor of the current transaction. If so, we are

out involving the programmer.

In the second case, we could consider the asynchronous
signal as another way to exit a transaction, but then return-
ing from the signal handler would effectively be jumping
into the middle of a transactional statement, which we have
strived to avoid in general. Alternatively, we could coresid
disabling signals for the duration of a transaction, but ee b
lieve that this is impractical. A more pragmatic solution is

in the third case above; otherwise, we are in the unsupportedto abort the transaction, handle the signal, and then re¢ry t

case. If thelongjmp is not within a transaction, then it is an
error unless the jump buffer contains zero.

Exiting a transaction

For exiting a transaction, it is simplest if the transacttom-
mits: the desired semantics is simply the semantics of an or-
dinary C++ program in which the entire transaction happens
to execute without conflicting with any other threads. Thus
we mandate this behavior for all “normal” exits. This begs
the question, what constitutes a normal exit? Also, we must
specify what happens when a transaction aborts. In partic-
ular, we must specify which effects are discarded, and what
code is executed after the transaction aborts. We consider t
various ways a thread may exit a transaction.

Reaching the end of theransaction statement is
clearly a normal exit. Similarlyyeturn, break, continue
andgoto statements are used as ways to control flow within
a single function body, and most C++ programmers would
be surprised if these were not treated as normal exits. Thus
we choose to commit a transaction that is exited using one
of these statements.

On the other hand,ongjmp discussed above is typically
used to abandon a large task without ending the entire pro-
cess. This pattern is inconsistent with committing thedran
action, so we choose to abort transactions when they exit via
longjmp. We can use the algorithm described above to de-
tect when alongjmp would exit atransaction Statement
and abort the appropriate transaction. In this case, a#tthe
fects of the transaction are discarded, and Ibegjmp is
executed afterwards. The only information transferrecbbut
the transaction is thint passed as an argumentligng jmp.
Control resumes at the appropriatet jmp.

A transaction may also be exited by throwing an excep-
tion. This is a more subtle case, and we discuss it in detail in
Section 4.

transaction, as if the signal occurred before the trarsacti
began. While it is possble to avoid the overhead of retrying
by handling a signal without aborting a transaction that is
executing when it occurs, this would require more sophisti-
cated support from the transactional memory infrastrectur
than we would like to require for an initial implementation.

3.6 Privatization

Many transactional memory implementations exhibit the so-
called “privatization problem” [8, 21]: The implementatio
allows transactions that have logically completed to modif
a piece of memory that another transaction intended to make
private—for example by removing the last shared reference
to it—and thus safe to access nontransactionally. A particu-
larly troublesome example occurs when the memory is freed
and subsequently reallocated. Clearly is not reasonable to
forbid nontransactional access to freshly allocated mgmor
This is primarily an implementation issue, but has some
bearing on the programming interface: some privatization
mechanisms that aim to address this problem require the pro-
grammer taexplicitly say that a piece of memory is now be-
lieved to be private, while others solve the problenplic-
itly, i.e., without special treatment by the programmer.
The privatization problem was identified only recently.
Early indications are that practical solutions for both licip
and explicit privatization exist, but implicit privatizah en-
tails a significant cost in performance and scalability,chihi
naturally tempts us to burden the programmer with explicit
privatization. We resist this temptation, requiring inegli
privatization in an initial implementation, for the follomg
reasons:

e |t provides an easier path for programmers to adopt trans-
actional programming styles because it avoids requiring
them to understand a new issue that has no analogue in
traditional concurrent programming.
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¢ Research on privatization is in its infancy; it is too early In an initial implementation, we might impose the rule
to conclude that its overhead is fundamentally excessive. that none of these features can be used within transactions,
and leave behavior undefined if this rule is broken. As the
implementation becomes more mature, it will be important
to provide support to help the programmer avoid breaking
these rules. Over time we can provide increasingly robust
Note that this choice isot consistent with our desire to  support for flagging errors (for example, we might imple-
make decisions that we can change without breaking existingment runtime error messages first and later provide support
code. Thus, if an explicit privatization model is adopteeta  for compile-time checking of conformance to the rules). We
it should be chosen explicitly (for example with compiler might also relax the rules over time, as more system calls
options), and the system should continue to support intplici and library functions are certified as “safe to call” or if ope
privatization for programs that do not make this choice. ating system or library changes are made to make them safe.
A possible intermediate position is to implement only Observe that each step in such a progression can be made
explicit privatization, and requireree to ensure thatablock ~ without breaking existing correct code.
of memory is privatized before being freed. Programmers ~ While a variety of techniques for allowing /0 within
would still be required to avoid nontransactional accesses transactions are known for a variety of contexts, it does not
an object that has been accessed by a transaction and ndgeem possible to have a general solution that covers all case
since freed, but at least nontransactional accesses tiyfres and does not introduce significant detrimental interastion
allocated memory would be safe. with other features and with performance. Therefore, it is
Note that an implementation that provides strong atomic- preferable to gain experience with limited models that do
ity by turning nontransactional accesses into mini-tratisas ~ not allow I/O in order to learn whether supporting I/O in the
does not exhibit the privatization problem: there are no-non long run makes sense, and if so what kinds of I/O for what
transactional accesses. However, many of the optimization kinds of applications. Given the tradeoffs that are indaljta
that can reduce the overhead of strong atomicity also rein-introduced by attempting to support I/O in transactions, it
troduce the privatization problem, so we advise against con does not make sense to impose a choice in this regard with-
flating these issues, even if we eventually decide to supportout clear guidance.
strong atomicity.

¢ Practical solutions exist, and although they do impose a
performance and scalability cost on transactions, they do
not impose overhead on the rest of the application.

3.8 Other advanced features

A host of features have been proposed for use in transactions
It is clearly undesirable and probably infeasible to suppor
Code executed within transactions must generally provide them all simultaneously, and many of them introduce trade-
means for detecting conflicts, as well as for undoing the ef- offs that we should not make without clear guidance that
fects of the transaction in case it aborts. This means tilat ca the feature is needed. Therefore, we recommend against sup-
ing code that has not been compiled to execute within trans-porting any of these more advanced features initially, ab th
actions can result in incorrect behavior, especially iflsuc we may gain experience and make informed decisions about
code has side effects: these side effects may be noticablavhether and how to support them later. We briefly discuss
even if the transaction aborts. An obvious example is code a few such features below. In all cases, we are comfortable
that performs I/O: if visible output has already occurréd, i with our decision to omit such features initially, becalrssyt
is not possible to abort the transaction and give the impres-can be added later without breaking existing code.
sion that it never executed. As mentioned earlier, richer language features have been
For these reasons, we recommend against supportingproposed that provide additional flexibility beyond what ba
transactions that perform 1/O, invoke system calls, orlgall ~ sic transactional statements allow. For example, rihery
brary functions that have not been compiled by a transaction andorElse constructs of Haskell STM [15] allow program-
aware compiler. mers to express alternative code to execute in case a (pested
Some system calls and library functions (e.g., math li- transaction aborts, to wait until some condition holds befo
brary functions) have no side effects and can therefore beproceeding, etc. It may make sense to support similar fea-
safely called within transactions, even though they are not tures in C++ in the future, but not initially.
aware of transactions. In other cases, by making the imple-  Open nestingallows a nested transaction to commit or
mentations aware of transactions, we can make them safe t@abort independently from its parent. A good discussion of
include in transactions. In other cases, we will likely wemt ~ why open-nested transactions might be useful can be found
forbid certain system and library calls in transactionstier in [4]. Open nesting significantly complicates the semantic
forseeable future. Similarly, some kinds of I/O can be sup- of transactions, however, because open-nested transactio
ported within transactions (for example, a transactiotal fi  violate the all-or-nothing guarantee: An aborted trarisact
system appropriately interfaced with the transactionahme  may have effects that are visible to other threads because
ory implementation can allow file 1/0O within transactions). it may include open-nested transactions that commit. Sim-

3.7 Input/output, system calls, and libraries
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ilarly, a committed transaction may not appear to execute lating the expectations of C++ programmers. This problem
atomically because it may include open-nested transaction is avoided if transactions terminated by exceptions commit

that commit, and make their effects visible to other threads
before the parent transaction commits (or aborts). Desggni
open nesting semantics that enables the desired fundtional

Thus, aborting transactions is a natural fit to trse of
exceptions in C++, but causes problems for the exception
mechanismWe find the disadvantages induced by either

without giving up many of the benefits of transactions is an committing or aborting transactions terminated by excep-
active area of research, and there is not yet agreement aboutions to be significant enough that we believe more expe-
what the right trade-offs are. rience is needed before settling on a solution. And if we
We also recommend against allowing parallelism within choose to abort such transactions, we must still decidelwhic
a transaction in an initial implementation; each transacti  effects are discarded.
should be executed by a single thread. There are three rea- Because of the challenges involved in determining how
sons for this recommendation. First, although many C++ exceptions should interact with transactions and (in some
programs are concurrent, concurrency is not native to the cases) of implementing the desired behavior, it may be de-
language, and creating a new thread is a relatively heavy-sirable to simply disallow exceptions within transactidéors
weight operation. C++ programs tend not to create threadsan initial implementation. For many applications, this re-
liberally, but instead create enough threads to provide the striction is of little consequence, especially if violat®of
desired parallelism and then coordinate their executigh wi this rule can be detected and reported, preferably at cempil
locks and other synchronization mechanisms. Transadtiona time. Thus, we should not wait to make a final determination
memory in C++ serves that same purpose. Second, researcbn this issue before releasing an initial implementatioth an
on transactional memory thus far has been primarily for encouraging experimentation with it. In the rest of this-sec
single-threaded transactions. Well developed proposals f tion, we discuss some alternatives for integrating exoepti
efficient transactional memory implementations that suppo support in the future.
parallelism within transactions do not yet exist, and thet co
of supporting such seems likely to be high, at least in the nea
term. Third, similar to open nesting, parallelism withiaris- This option is the simplest: Committing transactions when
actions introduces many semantic issues, particularlig wit an exception leaves theransaction statement leaves the
respect to the nesting model. We believe that eventually it exception mechanism unchanged in both semantics and im-
may be important to support parallelism within transaation plementation. Ringenburg and Grossman [39] favor for this
but not yet, at least not for C++. approach for their AtomCaml language. However, different
approaches are appropriate for different contexts. Commit
4 E . ting a transaction that throws exception seems counter to
) xceptions the intended use of exceptions in C++ as a mechanism to
Exceptions present a challenge in the integration of trans- deal with failure and restore invariants. This intentiomds
actional memory into C++. On one hand, exceptions are merely a de facto standard; it is an explicit design rule of
intended to handle errors that cannot be handled locally C++ [23, 44]. Since an exception signals failure of some
when they are discovered. The design principle in C++ is assumption, it may occur when the transaction has made
that exceptions should be rare, that they indicate failure, the state inconsistent, relying on the guarantee that rer oth
and that the purpose of exception handlers is to restore in-threads will be able to see that inconsistency.
variants; this principle is embodied in such notionseas If the programmer must explicitly restore any invariants
ception safetyf44]. This is similar to the original purpose  that may have been violated when an exception was raised,
of transactions: aborting a transaction discards its &ffec additional code will be required to do the restoration, and
restoring any invariants that hold outside of transactions perhaps also to record the effects of a transactiaroimal
manual restoration of invariants seems redundant. Thas, pr execution in order to facilitate the restoration. This seémn
dictability suggests that transactions terminated by gxce be a poor choice when the transactional memory implemen-
tions should abort. tation can perform the task automatically and transparentl
On the other hand, an exception in C++ may throw arbi- Worse, other transactions will be able to observe the irgerm
trary objects, which carry information from the point of the diate state between the commit of the transaction that hrow
throw to the exception handler. In particular, these object the exception and the commit of the transaction that restore
may contain pointers or references to objects allocated orthe invariant. This severely undermines the power of trans-
modified in a transaction to a point outside the transaction. actions for simplifying programs by enforcing invariants.
If a transaction aborts when it is terminated by an exception ] )
then the information in the exception may be lost. Indeed, if 4-2 EXceptions Abort on Exit
all the effects of a transaction are discarded, then refecen  If a transaction terminated by an exception is to be aborted,
objects that were constructed within the transaction would the most natural approach is to abort it when the exception
no longer exist, and the references would be dangling, vio- leaves thecransaction statement. However, it still leaves

4.1 Exceptions Commit
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the thorny issue of what to do about the object thrown by the ining the exception object may be confusing because it may

exception in the default case when the transaction is athorte not be self-consistent: objects allocated within the taans
The object thrown is not itself a problem: the exception tion will reflect the effects of the transaction, while oligec

mechanism already requires distinct memory allocation, so not allocated within the transaction will not.

we can simply make these writes not part of the transaction;

they occur immediately after the transaction aborts, astlju 4.3 Exceptions Abort on Throw

before the obj_ect is thrown. In this sense, this s_olutic_)n IS Another approach is to exploit the idea that exception han-
the one described above fapngjmp, where aborting did  jers and transaction aborts are both “fixing mistakes”, and
not cause any problems because only an integer is passedg|y exclusively on the transaction mechanism. Specificall
from the point of thelongjmp to the point of theset jmp. abort the transaction at the point of throw when the handler i
The problem occurs if the exception object contains painter getermined not to be within the same transaction; no excep-
or references to other objects, particularly ones allatate  tjon is thrown at all. Automatically retrying the transaxti
modified in the transaction. in this scenario is probably inadvisable, so we must specify
The simplest possibility is to forbid throwing objects with  \yhere control resumes after the transaction aborts. We can

pointers or references. This is not as restrictive as it migh g this by adding a clause to theansaction statement;
seem at first: although C++ exceptions may throw arbitrary

objects, in practice, most exception objects are chosen fro transaction statemenf exception statemenj

a conventional class hierarchy. The most likely case of an

exception object with pointers isstd: : string, as in: This approach will lead to smaller transaction bulk and
better performance. However, it makes it difficult to deter-
mine cause: the only information one can get from a throw-
aborted transaction is that it aborted via throw. This appho
The normal course of action is to copy constridhto the may be fine as long as one follows the “exceptions are indi-
exception memory. This copy construction may involve a cations of program failure” design rule of the C++ standard,
call to new, because strings are generally indirect objects. put again, experience is necessary to assess this.

Worse, the string may be indirected to a reference-counted A slightly more powerful variant is to allow passisgme
object: copying the object involves incrementing the refer information, whose type is restricted by the syntax, to the
ence count, while aborting the transaction involves rgliin exception clause. For example, we might allow the pro-
back, resulting in an incorrectly built object in the exdept  grammer to bind one integer variable, which is accessible in
memory. side thetransaction statement and thexception clause,

Note that the compiler cannot always detect violations and will not be rolled back if the transaction aborts. The pro
of a rule forbidding throwing objects containing pointers grammer can use this variable to pass simple information out
(because exceptions are a dynamic construct). Thereforeof an aborted transaction to theception clause, while the
if we chose this rule, we would make no guarantees aboutexception mechanism can avoid the complication of dealing
pointers or references in exception objects thrown out of a with arbitrary thrown objects.
transaction. A disadvantage of this approach relates to our
desire for incremental adoption and predictability: it Wbu 4.4  Overriding defaults
be easy to call some legacy code that potentially throws
a complex object; the error would not be caught by the
compiler and the behavior would be unpredictable.

Another possibility is to copy the objects referenced by
the exception object. If we do only a shallow copy, then all
the problems remain behind one level of indirection, though
solving the problem for one level of indirection may be {

std::string x( "hello" );
throw x;

One consideration in evaluating the tradeoffs discussed
above is how easy it is to override the default behavior. For
example, if the default behavior is for exceptions to abart o
exit, programmers can easily cause the transaction to com-
mit when appropriate, as in:

sufficient to address the vast majority of uses in practige. O SomeType throwthis = NULL;

the other hand, a deep copy may be prohibitively expensive, transaction {

especially if the copied objects must reside in the excaptio try {

memory. Thus, we do not find this possibility very attractive // code that might throw an exception
A third possibility is to allow pointers and references to } catch (SomeType e) {

other objects, and to discard all the effects on objects that throwthis = e;

were not allocated within the transaction. However, olsject }

allocated within the transaction would still remain, and so ¥

there would be no dangling references. This is essentfaly t if (throwthis)

approach proposed for STM Haskell [15], and we believe it throw throwthis;

worth considering. One possible shortcoming is that exam-  }
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This idiom provides a reasonable emulation of the alter- should be done only if a certain condition is met, and de-
native semantics, but is not seamless. For example, cagtchin termining that condition involves doing much of the task.
the exception inside the transaction and throwing it oetsid Rather than testing the condition and then redoing much of
would lose useful information such as stack traces, which the work if the task needs to be done, the programmer can

would interfere with debugging. simply start doing the work in a transaction and then abort
Similarly, given explicit abort (see Section 5.2), we can the transaction if the condition is not met.
catch an exception and explicitly abort the transactiomusTh If exceptions abort transactions, they could be used for

the choice between these options is mostly concerned withthis purpose. However, regardless of how we eventually de-
common-case performance and the semantics most likely tocide to handle exceptions, it may still be better to provide a
be appropriate. In contrast, tifirowing an exception aborts  separate mechanism for explicitly aborting transactiess,

the transaction, we do not have such flexibility. pecially if exceptions abort on throw: the behavior desired
_ ) when a transaction is explicitly aborted is likely to be quit
5. Variants and Idioms different from that desired when a truly unexpected event

Beyond the basic design for integrating transactional mem- Occurs. For exceptions that abort on exit, the need for a sep-
ory into C++, there are additional features that may be Wisefu araté mechanism is less clear because we can easily distin-
to provide, and some idioms that provide useful functional- 9uish the cases by using a special kind of exception for an

ity. We discuss some of these in this section. explicit abort. However, if explicit abort is intended asan
ternate means of ordinary control flow (likeeak), then by

5.1 Programmer-directed contention control the C++ design principle that exceptions indicate program

In the basic design discussed thus far, the system is reispons failure, an exception should not be used for this purpose.

ble for arbitrating conflicts between transactions. If aisra Therefore, we believe that we will eventually want to

action aborts due to conflict with another transaction (or an support explicit abort. The behavior of explicit abort may
asynchronous signal), it is simply retried. To avoid liedp ~ depend on the nesting model implemented. For example,
the system must have some mechanism to facilitate progresswith flat nesting, the obvious behavior is to undo the ef-
for example by managing contention so that each transactionfects of the entire transaction, and resume execution after
eventually executes without conflict. An alternative (or ad the aborted transactional statement. With closed nesting,
ditional) possibility is to provide the programmer a hook fo may be desirable to abort only the current (nested) trans-
detecting and dealing with transactions that abort for some action and resume execution of the parent transaction. To

reason. A simple such hook is a clause forthensaction avoid breaking existing code when introducing closed nest-
statement, such as: ing, and to allow the programmer to express both kinds of

aborts, the programmer should express “abort to the top”

and “abort this (nested) transaction” differently, for exa
The programmer can use tHeilure clause to imple- ple withabortAll andabortInner keywords.

ment some simple functionality that restricts the number of ~ We note that it is not necessary to explicitly support an

retries, or tries an alternative transaction upon failate, indication of whether a transaction was aborted, becaise th
Note, however, that the existence of such a hook need notcan easily be achieved using an idiom like the following one:

imply that the system will always execute the statement in

thefailure clause when the transaction is aborted: Because {

the effects of the aborted transaction are discarded, the sy  int aborted = true;

tem may retry the transaction before ceding control to the transaction {

programmer. Similarly, we should not be tempted to over- aborted = false;

specify the circumstances under which fhe lure clause

may be invoked: different implementations have different  }

reasons for failing transactions. The main point is to give  if (aborted) {

control to the programmer eventually in case the transactio

(repeatedly) fails to complete. by
The failure clause should not be conflated with the 1}

exception clause from the “abort on throw” option for

exceptions; the desired behavior in these cases are ligely t

be quite different. We also considered allowing an “argument” to be passed to

atransaction Statement, such as

transaction Statemenf failure statement

5.3 Passing an argument to aransaction statement

5.2 Explicit abort

It can be useful to provide a way for the programmer to
explicitly abort a transaction. For example, such a mecha- Effects on this variable wouldot be discarded if the trans-
nism enables a convenient style for programming a task thataction aborts, so it can be used to implement much of the

transaction (x) Statement
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functionality described above. This feature would be espe-
cially helpful in a system intended primarily for exploti

of various options, and in that case, we may want the argu-
ment to be avoid pointer, so that we can easily adapt the

system. However, such an open-ended mechanism is proba-

bly not appropriate as the final point in a language design.

6. Conclusion

We have summarized the main issues that must be addressed

for a pragmatic initial integration of transactional megor
into C and C++, aimed at supporting incremental develop-
ment and adoption. Our goal has been to explore the design
choices for integrating transactions into these languamas
way that will be natural for programmers who use the preva-
lent coding styles in C and C++.

To support transactions in C and for C-like data types in
C++, a word-based transactional memory implementation is
most appropriate, and this naturally leads taransaction
statement as the primary syntax for expressing transaction
For C, the trickiest issue is how to handle I/O in transa&ijon
if at all, while C++ provides additional challenges, pastic
larly related to exceptions.

This paper narrows the design space on a humber of is-
sues, but leaves open reasonable alternatives for others. F
ture work includes implementing and experimenting with
some of these alternatives, allowing use and experience
to guide us towards successful integration of transadtiona
memory into the C and C++ standards, as well as successful
use of these features by programmers.
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