
Transactifying Applications
using an Open Compiler Framework

Pascal Felber
University of Neuchâtel, Switzerland

pascal.felber@unine.ch

Christof Fetzer
TU Dresden, Germany

christof.fetzer@tu-dresden.de

Ulrich Müller
TU Dresden, Germany

um@se.inf.tu-dresden.de

Torvald Riegel
TU Dresden, Germany

torvald.riegel@tu-dresden.de

Martin Süßkraut
TU Dresden, Germany

martin.suesskraut@tu-dresden.de

Heiko Sturzrehm
University of Neuchâtel, Switzerland

heiko.sturzrehm@unine.ch

Abstract
Transactional memory dramatically reduces the complex-
ity of writing concurrent code. Yet, seamless integration of
transactional constructs in application code typically comes
with a significant performance penalty. Recent studies have
shown that compiler support allows producing highly effi-
cient STM-based applications without putting the hassle on
the programmer. So far, STM integration has been partially
implemented in custom, proprietary compiler infrastruc-
tures. In this paper, we propose and evaluate the use of the
LLVM open compiler framework to generate efficient con-
current applications using word-based STM libraries. Since
LLVM uses the GCC compiler suite as front-end, it can pro-
cess code written in C or C++ (with partial support for other
languages). We also present a tool that allows “transactify-
ing” assembly code and can complement LLVM for legacy
code and libraries. Experiments using a lightweight C word-
based STM library show that LLVM integration performs
as well as hand-optimized calls to the STM library and bet-
ter than assembly code instrumentation of the application
code.

1. Introduction
Writing concurrent application using transactional memory
is a huge leap forward from traditional lock-based synchro-
nization. Yet, developers usually have two choices: either
they program explicit calls to the transactional memory; or
they opt for semi-transparent transactional support, i.e., they
leave it to the system to “transactify” the application. The
latter can be based on the programmer’s use of dedicated
language constructs [4] or on declarative mechanisms and
AOP code weaving [11].

Using explicit calls to the transactional memory, devel-
opers are exposed to the relative complexity of transac-
tion management but they can optimize the code for per-

formance. For example, the developer might know that
some variables are not shared and hence, do not need to
be accessed through the transactional memory. With semi-
transparent transactional support, the price to pay for ease of
programming is usually a reduced efficiency. It is not triv-
ial, for instance, to avoid redundant accesses to transactional
memory or to identify read-only transactions a priori.

Compiler and runtime support for transactional memory
can in many cases alleviate these limitations and produce
highly efficient code without putting much burden on the de-
veloper. Indeed, one can expect that a compiler can identify
transactional memory accesses with relative ease and map
them to the underlying STM. Furthermore, one can take ad-
vantage of the optimization passes of the compiler to reduce
as much as possible the costly operations on transactional
memory, and hence improve the performance of the result-
ing code.

For many researchers in the field, coming up with good
compiler support for STM is just not feasible. Existing com-
piler work in the STM domain is (as far as we know) based
on proprietary compilers. However, without compiler sup-
port, it is difficult to get good and representative workloads
and it is very difficult to get comparable performance results,
i.e., research progress will be slower. As a result for the com-
munity, some good ideas might be lost and smaller research
groups will find it increasingly hard to contribute.

Modifying an existing compiler like gcc is technically
difficult and it would be politically difficult to get extensions
like transactional memory support into the main branch of
the compiler. However, such optimizing tools are needed to
convince developers of the benefits of STM and trigger the
demand. Instead of modifying an existing monolithic com-
piler, we are investigating how far reusing the components
of an existing compiler framework (which provides parts
such as front-ends, back-ends for different platforms, or link
time optimizers) would be sufficient to optimize transac-

1 TRANSACT 2007

tional programs. To do so, we transactify programs by in-
strumenting a machine-independent intermediate represen-
tation or machine specific assembly code. This is technically
easier and the same framework can be used in combination
with multiple front-ends supporting a variety of program-
ming languages.

application
(source)

library
(source)

library
(binary)

usesuses

assembler source
of library

disassembler
+ postproc.

instrumented binary
library

instrument
with Tarifa

instrumented
binary application

uses

LLVM code

compile
to LLVM

instrument
with Tanger

instrumented
LLVM code

LLVM
optimizer

LLVM code

compile
to LLVM

instrument
with Tanger

instrumented
LLVM code

instrumented
assembler source

optimizer &
assembler

Figure 1. Architecture of our two tools. TARIFA instru-
ments machine-specific x86 assembly code while TANGER
instruments machine-independent LLVM code.

We have implemented two instrumentation tools to semi-
transparently transactify programs written in unmanaged
languages like C and C++ (see Figure 1). The first tool,
TANGER, statically instruments intermediate code produced
by the LLVM [8] compilation framework. LLVM has not
only gained popularity in the academic domain but it is also
expected to be used in the upcoming release of OS X version
10.5.

LLVM has important advantages in that it facilitates a
hardware-independent intermediate representation (IR) for
code. Application code in the LLVM IR can be easily modi-
fied by LLVM components such as compiler passes. LLVM
IR can be seamlessly transformed between in-memory and
on-disk representations and a human-readable assembler
language. Different compilation phases are accessible as
separate tools, so new transformations such as STM in-
strumentation can be provided without having to modify
existing LLVM components. This eases adding STM instru-
mentation to existing build procedures (LLVM provides a
gcc-like interface), as well as making deployment of STM
instrumentation tools easier (i.e., in constrast to monolithic
compilers, deploying a modified compiler is not necessary).
LLVM additionally provides link-time optimizations, just-
in-time compilation, compilation front-ends (e.g., a gcc-
based front-end for C/C++), and code generation back-ends
for various architectures as well as for generating C source
code from LLVM IR.

To understand the need for a second tool, consider that ap-
plication programs will sometimes have to call library func-

tions from within atomic blocks. The problem is that not
all libraries are available as source code, and even for those
for which one has access to the source code, it is often not
known how it was initially configured and compiled. Hence,
it is difficult to recompile and transactify these libraries auto-
matically. Therefore, our second tool, TARIFA, statically in-
struments x86 assembly code, so that we can transactify ex-
isting library code that is called from within atomic blocks.

The decoupling of the instrumentation via TANGER and
TARIFA from the compiler and its optimization components
permits the use of an unmodified compiler and optimizer.
In particular, we can always use the latest version of the
compiler and optimizer without the need to adapt changes
for every new release (as needed in other approaches). We
do not yet provide optimizations specially targeted as STM
instrumentation. However, we have observed that transac-
tional code already benefits from the general-purpose op-
timizations that LLVM performs. For example, redundant
loads from memory are transformed into a single load into
a virtual register, which reduces the number of transactional
loads introduced by our instrumentation. Since it is difficult
to compare with other existing compile-time approaches, we
compare our approach with manually instrumented and op-
timized code compiled via LLVM, as well as with standard
gcc. We will see that the LLVM code is typically as good as
the manually optimized code in our benchmarks.

Related Work
Compiler support for transactional memory was first used
in languages with managed environments. Harris and Fraser
first employed compiler support to provide atomic blocks
in Java programs [4]. Adl-Tabatabai et al. describe support
for transactions in an optimizing compiler in [1]. They pro-
vide a managed runtime environment that supports multi-
threaded Java programs using transactional language exten-
sions. Their platform is based on a just-in-time dynamic
compiler for Java and C#, a virtual machine, and the McRT-
STM runtime [13]. Harris et al. present how to decrease run-
time overheads by optimizating for transaction support in an
compiler for Common Intermediate Language programs [5].
Transaction support based on Java byte code modification is
presented by Herlihy et al. in [6]. We use a similar approach
in newer versions of LSA-STM [11].

Transaction support for unmanaged languages is de-
scribed in [17], and several optimizations for a C compiler
are presented (e.g., moving transactional loads out of loops).
Damron et al. also use a modified C compiler to support
transactions [2].

There exist a variety of binary instrumentation tools.
The first instrumentation tool was (as far as we know)
ATOM [16] which is a static binary instrumentation tool.
ATOM permits to iterate over all functions in a binary and
over all instructions within a function and permits to add new
instructions before and after existing instructions. ATOM re-
quires changes to the tool chain (i.e., compiler and linker) to

2 TRANSACT 2007

make sure one can implement the iterators. Static instrumen-
tation has the disadvantage that one either needs changes to
the tool chain or one cannot guarantee that one can always
distinguish between what is data and what is code. However,
one can cope with these problems using several heuristics
and in particular, one can flag parts of the code that might
contain disassembling errors [15].

Most modern instrumentation tools are dynamic, i.e., they
instrument basic blocks at the time they are executed the first
time. There are a variety of dynamic binary tools available,
e.g., PIN [9] and Valgrind [10]. Typically, dynamic instru-
mentation tools exhibit a large run-time overhead and hence,
are not ideal for transactifying programs and libraries.

Dynamic binary translation and optimization is used to
transactify binary legacy code in [18]. Overheads are re-
duced by applying optimizations such as removing transac-
tional accesses to thread-private data, inlining, or avoiding
saving and restoring dead registers and processor flags.

Link-time optimizers like PLTO [14] permit the static op-
timizations of binaries. One could use appropriate binary op-
timizers to optimize the code generated by our TARIFA tool.
Also, a link-time optimizer needs to perform some form of
static binary instrumentation itself and might hence be used
to instrument binary code. However, we decided to write our
own static instrumentation tool for x86 (TARIFA) because
we need a very specialized instrumentation targeted towards
individual address modes instead of individual operations.

Contributions
Most of the current research focuses on modern languages
like Java and C# that use intermediate codes and just-in-time
compilation. This work focuses instead on supporting trans-
actional memory in C and C++. Both languages are known
for their efficiency and hence they are used as the primary
language in a large percentage of applications. However, to
the best of our knowledge, there is so far no transparent and
widely available STM support for C and C++ applications.
Before deciding to use LLVM for instrumention, we have ex-
perimented with aspect-oriented extensions for C and C++.
However, the AOP tools for C and C++ were neither suffi-
ciently stable nor was the resulting code sufficiently fast.

In this paper, we evaluate the use of an open compiler
framework as a generic front-end to word-based STM im-
plementations. Our goal is to provide the means to develop
efficient STM-based applications without putting much has-
sle on the developer and allowing designers of STM infras-
tructures to plug in their own STM implementations. The
resulting tool, TANGER, relies on the aggressive optimiza-
tion of the link-time optimizer to produce applications that
perform competitively with hand-optimized code

Using an open compiler framework has the advantages
that it not only provides a means to the community to share
instrumentation tools and workloads, but also to build com-
mon benchmarks in which new STMs and optimizers can be

plugged in. This will hopefully result in better comparisons
of the proposed optimizers and STM implementations.

We also present TARIFA, a tool that allows us to instru-
ment x86 assembly code and map memory accesses to the
underlying transactional memory. Although TARIFA does
not produce code that is as efficient as the instrumented
LLVM code, it can be used to transactify legacy code or li-
braries that must be used from within transactions (a trans-
action should only call functions that are themselves transac-
tional). Therefore, the combination of TANGER and TARIFA
can support sophisticated applications with dependencies on
legacy code.

Finally, we have also developed a low-footprint, efficient
word-based STM library written in C to evaluate TANGER
and TARIFA. This library, called TINYSTM, is the basis
for our development of tools for supporting resource-limited
embedded applications that use STMs for parallelization and
failure atomicity.

Our preliminary performance evaluation reveals that
TANGER produces code that is as efficient as hand-optimized
code, while TARIFA does not perform as well due to the
complexity of identifing and optimizing transactional mem-
ory operations at the assembly code level.

2. TANGER: STM Support with LLVM
LLVM [8] is a modular compiler infrastructure that provides
language- and target-independent components. It defines an
intermediate representation (IR) for programs with a simple
type system. In this way, LLVM provides a clean way for
instrumenting programs and adding calls to an STM. The
instrumented code can then be optimized and a machine-
specific binary is statically generated from the optimized
bytecode.

LLVM simplifies the instrumentation dramatically in
comparison to instrumenting native x86 code (see Section 3)
because the LLVM IR is based on a load/store architecture,
i.e., programs transfer values between registers and memory
solely via load and store operations using typed pointers.
This permits us to translate memory accesses to accesses to
transactional memory in a straightforward way.

LLVM IR has no concept of a stack. Local variables are
not stored on the stack and are thus not accessed via loads
and stores. Instead, all local variables are kept in registers.
Exceptions are local variables that are accessed via point-
ers: they are explicitly allocated, their addresses are kept in
registers, and they are accessed via explicit load and stores.
Hence, many local variables are not accessed via the STM
because we do not instrument register accesses. This can de-
crease the runtime overhead of instrumented code and works
without any additional glue code as long as transactions
cover the whole body of a function (i.e., transactions have
function granularity). If transactions only cover a subset of a
function, the instrumentation needs to take care of the roll-
back of local variables before a retry or an abort of a transac-

3 TRANSACT 2007

tion. This rollback is simplified because LLVM uses a single
static assignment form.

The LLVM framework has the possibility to alter the in-
termediate representation (IR) through so-called “passes”.
These passes, written in C++, can iterate at different gran-
ularities over the IR. Our TANGER instrumentation tool is
implemented as an LLVM pass. To transactify an applica-
tion, we first use LLVM to compile to the IR and apply
general-purpose optimization passes, then transactify the IR
using TANGER, and finally apply optimizations again and
use LLVM backends to produce native binary code or C
source code.

Unlike memory accesses that are implicitely translated
to transactional accesses with no intervention of the pro-
grammer, transaction demarcation must still be specified ex-
plicitely. An exception is when transactions cover the whole
body of a function and can be specified declaratively (by pro-
viding a list of “transactional functions” to TANGER).

1 int set contains (intset t ∗set , int val)
2 {
3 int result ;
4 node t ∗prev, ∗next;
5

6 atomic(
7 prev = set−>head;
8 next = prev−>next;
9 while (1) {

10 v = next−>val;
11 if (v >= val)
12 break;
13 prev = next ;
14 next = prev−>next;
15 }
16 result = (v == val);
17)
18

19 return result ;
20 }

Figure 2. Original C code with atomic block for testing
containment in an integer set.

To specify transaction demarcation around arbitrary re-
gions of code, we can either use “atomic blocks” (us-
ing the atomic keyword, see Figure 2) and use a source
code preprocessor, or surround transaction by macros like
ATOMIC_START and ATOMIC_END. In both cases, the trans-
action start and end will be translated into calls to external
functions that will appear in the LLVM bytecode and serve
as markers for instrumentation.

After compiling the source code to LLVM byte code, the
marker functions and all other load, store and call instruc-
tions are still in the same order as before (see Figure 3).
Currently, we add a transaction descriptor as an additional
argument to instrumented functions to avoid the extra cost
of accessing a thread-local variable. Our tool, TANGER, re-
places the start marker by a call to setjmp and one to
stm_start (Figure 4, line 8–9). The setjmp call is needed

1 int %set contains(%struct . intset t ∗ %set, int %val) {
2 entry :
3 ...
4 %tmp = tail call %struct . stm tx t ∗ (...)∗ %stm get tx()
5 tail call void %startTANGER(%struct.stm tx t∗ %tmp)
6 %tmp22 = getelementptr %struct . intset t ∗ %set, int 0, uint 0
7 %tmp23 = load %struct.node t∗∗ %tmp22
8 %tmp25 = getelementptr %struct . node t∗ %tmp23, int 0, uint 1
9 %next.2 = load %struct . node t∗∗ %tmp25

10 %tmp29 = getelementptr %struct . node t∗ %next.2, int 0, uint 0
11 %tmp30 = load int∗ %tmp29
12 %tmp33 = setlt int %tmp30, %val
13 br bool %tmp33, label %cond next, label %bb39
14 ...
15 tail call void %endTANGER(%struct.stm tx t∗ %tmp)
16 %result .0. in = seteq int %tmp30.1, %val
17 %result .0 = cast bool %result .0. in to int
18 ret int %result .0
19 }

Figure 3. LLVM bytecode generated from Figure 2.

for a later rollback via longjmp upon abort.1 Between these
two instructions, a label is inserted to have a jump point
which is needed if the transaction needs to be retried. Each
start marker can have several corresponding end markers
calls due to branches and switches but they have to be at
the same nesting level and in the same function. Using the
atomic block syntax enforces that each start marker has one
valid matching end marker. End markers are replaced by a
stm_commit call and a branch which proceeds if the com-
mit was successful or jumps to the start of the atomic block
in case a retry is needed (lines 25–27).

Between the two transaction demarcation markers, TANGER
has to transactify all memory accesses. As already men-
tioned, the instruction set of LLVM provides a very efficient
way to identify such operations. There are only three in-
structions to deal with: load, store, and call. Because of the
compilation via llvm-gcc, which uses the gcc frontend,
occurence of these three instructions is already minimized
through the optimization. Furthermore, most non-heap loads
and stores are eliminated as well.

When a load or a store has been identified to be transac-
tional, it is replaced by the corresponding call to the STM
(stm_load or stm_store), possibly surrounded by cast in-
structions (lines 12, 16, and 20). Casting is necessary if the
data type accessed by the program does not match one of
the native types managed by the STM implementation. Such
casts are necessary to preserve the type constraints of LLVM
but typically they do not produce extra intructions in the bi-
nary (e.g., casting between pointer types as on line 11, be-
tween unsigned and signed type as on line 21, or between
memory addresses and unsigned value of the same size as
on line 13).

Function calls need special handling. Some of them are
calling external functions for which we cannot generate a

1 If one does not want to use the setjmp/longjmp facility, one has to
explicitely check whether a transaction aborted during its execution (e.g.,
after every load and store) and restart it if that is the case. The resulting
code will be larger and slower.

4 TRANSACT 2007

1 ...
2 cond false :
3 %tmp = tail call %struct . stm tx t ∗ (...)∗ %stm get tx()
4 br label %cond false. startTX
5

6 cond false . startTX :
7 %txref21 = getelementptr %struct . stm tx t ∗ %tmp, int 0, uint 6, int 0
8 %txref22 = tail call int % setjmp(%struct. jmp buf tag∗ %txref21)
9 tail call void % stm start(%struct . stm tx t ∗ %tmp, int 0, int 1)

10 %tmp22 = getelementptr %struct . intset t ∗ %set, int 0, uint 0
11 %castA23 = cast %struct . node t∗∗ %tmp22 to uint∗
12 %callB23 = tail call uint %stm load(%struct. stm tx t ∗ %tmp, uint∗ %castA23)
13 %tmp231 = cast uint %callB23 to %struct . node t∗
14 %tmp25 = getelementptr %struct . node t∗ %tmp231, int 0, uint 1
15 %castA24 = cast %struct . node t∗∗ %tmp25 to uint∗
16 %callB24 = tail call uint %stm load(%struct. stm tx t ∗ %tmp, uint∗ %castA24)
17 %next.22 = cast uint %callB24 to %struct . node t∗
18 %tmp29 = getelementptr %struct . node t∗ %next.22, int 0, uint 0
19 %castA25 = cast int∗ %tmp29 to uint∗
20 %callB25 = tail call uint %stm load(%struct. stm tx t ∗ %tmp, uint∗ %castA25)
21 %tmp303 = cast uint %callB25 to int
22 %tmp33 = setlt int %tmp303, %val
23 br bool %tmp33, label %cond next, label %bb39
24 ...
25 %txref28 = tail call int %stm commit(%struct.stm tx t∗ %tmp)
26 %txref29 = seteq int %txref28, 0
27 br bool %txref29, label %cond false. startTX , label %bb39.commit30
28

29 bb39.commit30:
30 ...

Figure 4. Instrumented LLVM bytecode generated from
Figure 3.

transactional copy with TANGER. This has to be done, for
instance, with TARIFA (see Section 3). For internal func-
tions, our approach is to create a “transactional clone” of
the function. If a function call is inside an atomic block or a
transactional function, then the transactional clone is called.
Otherwise, the regular function is called.

One should note that the instrumentation process of
TANGER is configurable and can be easily adapted to gen-
erate different code for transactional operations. This would
allow other groups to test their own STM implementations
using our tool with little effort. If the interface of two STM
implementations is the same, then switching to the other
STM just requires recompilation. For example, we were able
to compare our STM to TL2 [3].

TANGER currently only supports word-based STMs, but
we believe that the LLVM infrastructure provides the neces-
sary tools to support object-based STMs as well. The LLVM
IR is typed; addresses are obtained by navigating through
typed arrays and structures. For example, the following code
shows a load of the first element of the intset_t structure
pointed at by set:

1 %tmp = getelementptr %struct . intset t ∗ %set, int 0, uint 0
2 %tmp1 = load %struct . node t∗∗ %tmp

Furthermore, LLVM provides alias analysis implementa-
tions, and whole-program analysis is also possible if all parts
of the program are compiled using LLVM.

3. TARIFA: STM Support for Binary Code
TARIFA instruments native x86 code with calls to an under-
lying STM (see Figure 5). The primary goal of TARIFA is
to be able to instrument existing libraries that export func-
tions that are called from within atomic blocks. One can use
a standard disassembler, e.g., objdump, to disassemble li-
braries. We process the output of the disassembler and use
information from the dynamic link loader to transform the
output into the right assembly format that can be processed
by TARIFA. Disassembling binaries might be difficult be-
cause for a stripped binary it is not always possible to distin-
guish between code and data embedded in the code segment.
However, one can check during the post-processing that a
sufficient part of the library was disassembled, i.e., we have
disassembled a slice of the code that contains all functions
that might be called directly or indirectly by the application
and during initialization of the library. Alternatively, we can
also instrument assembly code generated by the compiler.
We are currently supporting gcc assembler syntax, i.e., as-
sembly files generated by gcc and g++. Note, however, that
we recommend to generate LLVM code instead because this
results in much more efficient code (see Section 4).

TARIFA transforms x86 assembly code such that mem-
ory access are transformed into calls to the underlying STM.
Unlike LLVM, x86 is not a load and store architecture, i.e.,
memory locations might be accessed directly by operations
like add. Hence, we need to transform all operations that
access memory. Unlike also in LLVM, we do not have ad-
ditional registers that we could easily use to load the argu-
ments from the STM or to write intermediate results before
writing to the STM. Hence, we need to push some regis-
ters temporarily on the stack. The resulting code might not
be very efficient but it could easily be optimized, for exam-
ple, to minimize the number of push and pop operations (see
Figure 5). Ideally, we would like to use an existing link time
optimizer like PLTO [14] to do this optimization.

4. Evaluation
To evaluate the efficiency of our TANGER and TARIFA tools,
we have implemented a lightweight (less than 500 LOC)
word-based STM in C called TINYSTM. It is a time-based
transactional memory [12] that uses encounter-time locking,
similar to [17], and guarantees consistent reads for every
active transaction. TANGER, TARIFA, and TINYSTM are
freely downloadable from http://tinystm.org.

For our preliminary performance evaluation, we have
experimented with the “classical” intset micro-benchmark
used in [7] and by several other groups. It consists of an
integer set implemented as a sorted linked list.

The set was initially populated with 256 random elements
(we also experimented with larger values and observed the
same trends). Then, we started n threads performing concur-
rent read-only and update transactions (searching for a value
and adding/removing an element). We kept the size of the

5 TRANSACT 2007

library
(source)

library
(binary)

assembler source
of library

disassembler
+ postproc.

instrumented binary
library

instrument
with Tarifa

instrumented
assembler source

optimizer &
assembler

gcc,g++ compiler

..
addl %esi,4(%eax)
...

2 pusha
3 pushf
4 leal 4(%eax),%eax
5 pushl $4
6 pushl %eax
7 call _ZN6Tarifa5writeEPvi
8 addl $8, %esp
9 popf
10 movl 4(%esp), %esi
11 addl %esi,(%eax)
12 popa

Figure 5. TARIFA instruments x86 assembly code gener-
ated by disassembling binary libraries or, alternatively, by
the compiler.

integer set almost constant by alternatively adding and re-
moving an element. The rate of update transactions was set
to 20%. Each experiment was run five times and we kept the
median value.

We have compared three version of the benchmark: (1) a
version that was optimized by hand, i.e., we explicitely
inserted the minimal number of transactional load and
store operations; (2) a version that was instrumented us-
ing TANGER; and (3) a version that was instrumented using
TARIFA. We compiled the first version, using both gcc and
the LLVM compiler chain. Experiments were run on a two-
way machine with dual-core AMD Opteron processors at
2GHz, which makes 4 cores.

Results are shown in Figure 6. One can observe that the
version produced by TANGER performs as well as the hand-
optimized version when scaling up the number of threads.
The version instrumented using TARIFA runs slower due the
additional accesses to the transactional memory (about twice
as many), the management of the stack, and the suboptimal
register allocation, but it still scales well. Interestingly, the
LLVM compiler chain produced code that is as good as the
code generated by gcc.

We have also evaluated the overhead of TARIFA in hybrid
settings, where it is used for transactifying some parts of a
transactional application. To that end, we have instrumented
the removal operation of the integer set using TARIFA, and
the other operations using explicit STM operations. We have

0 1 2 3 4 5 6 7 8 9

50

100

150

200

250

300

Figure 6. Performance of the TANGER, TARIFA, and hand-
optimized benchmark versions.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

Figure 7. Performance in hybrid settings.

performed experiments under high contention with an up-
date rate of 100%, i.e., we had only insertions and removals.

The results, depicted in Figure 7, show that the perfor-
mance of the hybrid application is almost exactly in between
that of the TARIFA and the gcc hand-optimized versions.
This is not surprising given that half of the function calls
are to TARIFA-instrumented functions and the other half to
“native” STM functions.

Finally, we have tested TARIFA’s ability at instrumenting
binary libraries. We have selected a library containing a ran-
dom number generator (RNG). The experiment was run in
two setups: (1) each thread maintained a separate state for
the RNG and (2) all threads shared one RNG state. The sec-
ond setup demonstrates TARIFA’s ability to transactify mem-
ory accesses within a binary library. We have decompiled the

6 TRANSACT 2007

library and sliced out all functions belonging to the RNG.
The functions were then instrumented by TARIFA, and the
library recompiled. We have modified the intset benchmark
so that it uses the RNG of the instrumented library when
adding or searching for an element. The benchmark was run
with an update rate of 20%. Intuitively, the setup in which
all threads share a common RNG state should create a se-
quential bottleneck because it introduces a globally shared
variable that is updated at the beginning of each transaction
when determining the element to look for, insert, or remove.2

0 1 2 3 4 5 6 7 8 9
20

40

60

80

100

120

140

Figure 8. Demonstration of transactifying a binary library
with and without sharded state using TARIFA.

We observe indeed in Figure 8 that, when each thread
maintains a private RNG state, calls to the external RNG
function do not result in conflicts and contention. However,
if the RNG state is shared and as the number of threads
grows, contention increases and the shared state becomes a
sequential bottleneck. In contrast, performance scales with
the number of threads if each thread maintains a private
RNG state. This demonstrates that TARIFA transactified the
accesses to the shared state of the binary RNG library.

5. Conclusion
We introduced two new tools to transactify programs: TANGER
and TARIFA. TANGER instruments LLVM intermediate
code, whereas TARIFA permits us to process x86 assembly
code. Both tools can be used in collaboration to transactify
programs that use external libraries for which one has no ac-
cess to source code. Our goal is to support the parallelization
of existing C and C++ applications by minimizing the effort
required to transactify these programs.

Our secondary goal is to provide a framework for the
STM community in which one can evaluate (1) new code
optimizations in form of LLVM passes, (2) workloads, and

2 TINYSTM uses eager conflict detection for writes and does not allow
more than one pending write per location.

(3) new STM designs and implementations. This might
help to simplify the comparison of competing approaches.
TANGER, TARIFA, and TINYSTM are available for down-
load at http://tinystm.org.

References
[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,

B. Saha, and T. Shpeisman. Compiler and runtime support
for efficient software transactional memory. In Proceedings
of PLDI, Jun 2006.

[2] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. In ASPLOS-
XII: Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems, pages 336–346, New York, NY, USA,
2006. ACM Press.

[3] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II.
In 20th International Symposium on Distributed Computing
(DISC), September 2006.

[4] T. Harris and K. Fraser. Language support for lightweight
transactions. In Proceedings of OOPSLA, pages 388–402,
Oct 2003.

[5] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing
memory transactions. In Proceedings of PLDI, Jun 2006.

[6] M. Herlihy, V. Luchangco, and M. Moir. A flexible
framework for implementing software transactional memory.
In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 253–262, New
York, NY, USA, 2006. ACM Press.

[7] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer III.
Software transactional memory for dynamic-sized data
structures. In Proceedings of PODC, pages 92–101, Jul
2003.

[8] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In
Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Palo Alto,
California, Mar 2004.

[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with dy-
namic instrumentation. In PLDI, 2005.

[10] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings
of ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation (PLDI 2007), San
Diego, California, USA, June 2007.

[11] T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation for
software transactional memory. In TRANSACT06, Jun 2006.

[12] T. Riegel, C. Fetzer, and P. Felber. Time-based Transactional
Memory with Scalable Time Bases. In 19th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), June
2007.

7 TRANSACT 2007

[13] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh,
and B. Hertzberg. Mcrt-stm: a high performance software
transactional memory system for a multi-core runtime. In
Proceedings of PPoPP, Jun 2006.

[14] B. Schwarz, S. Debray, and G. Andrews. Plto: A link-time
optimizer for the intel ia-32 architecture. In Workshop on
Binary Translation (WBT), 2001.

[15] B. Schwarz, S. Debray, and G. Andrews. Disassembly of
executable code revisited. In IEEE Working Conference on
Reverse Engineering (WCRE), 2002.

[16] A. Srivastava. Atom: A system for building customized
program analysis tools. In SIGPLAN, 1994.

[17] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-
Tabatabai. Code Generation and Optimization for Trans-
actional Memory Constructs in an Unmanaged Language. In
CGO, 2007.

[18] V. Ying, C. Wang, Y. Wu, and X. Jiang. Dynamic Binary
Translation and Optimization of Legacy Library Code in an
STM Compilation Environment. In WBIA, 2006.

8 TRANSACT 2007

	1 Introduction
	2 Tanger: STM Support with LLVM
	3 Tarifa: STM Support for Binary Code
	4 Evaluation
	5 Conclusion

