
NZTM: Nonblocking Zero-Indirection Transactional Memory ∗

Fuad Tabba Cong Wang
James R. Goodman

University of Auckland

{fuad,wcon006,goodman}@cs.auckland.ac.nz

Mark Moir

Sun Microsystems Laboratories

mark.moir@sun.com

Abstract
This workshop paper reports work in progress on NZTM,
a nonblocking, zero-indirection object-based hybrid trans-
actional memory system. NZTM can execute transactions
using best-effort hardware transactional memory if it is
available and effective, but can execute transactions using
NZSTM, our compatible software transactional memory
system otherwise.

Previous nonblocking software and hybrid transactional
memory implementations pay a significant performance cost
in the common case, as compared to simpler, blocking ones.
However, blocking is problematic in some cases and unac-
ceptable in others. NZTM is nonblocking, but shares the ad-
vantages of recent blocking STM proposals in the common
case: it stores object data “in place”, thus avoiding the costly
levels of indirection in previous nonblocking STMs, and im-
proves cache performance by collocating object metadata
with the data it controls.

1. Introduction
With the computer industry increasingly focussing on build-
ing multicore processor chips, rather than making individual
processors faster, it is increasingly important for everyday
applications to be able to exploit multiple cores concurrently.
But concurrent programming using traditional mechanisms
such as locks and condition variables is subject to a number
of serious pitfalls, including troublesome tradeoffs between
performance, scalability, and software complexity.

Transactional memory [11] is widely considered to be the
most promising avenue for alleviating this situation. With
transactional memory, programmers specifywhat should be
executed atomically, leaving the system to determinehow
this is achieved.

Numerous research groups are investigating techniques
for providing system support for transactional memory. De-
spite significant progress, Software Transactional Memory
(STM) [29] implementations are generally one to two or-
ders of magnitude slower than what Hardware Transactional
Memory (HTM) [11] can reasonably be expected to achieve.

∗ This work is based on work described in [32], where it was called GSTM.
c© 2007. Copyright is held by the authors. All rights reserved.

But because most HTM proposals are complicated and leave
tricky issues unresolved, it will be difficult to include them
in commercial systems in the near future.

Damron et al. [3] proposed Hybrid Transactional Mem-
ory (HyTM), in which transactions can be attempted using
HTM support, but executed entirely in software in case they
fail. Because HyTM can execute any transaction in software,
it can exploitbest effort HTM support that does not neces-
sarily guarantee to be able to commit all transactions. Best
effort HTM can be substantially simpler thanunbounded
HTM [1, 8, 24, 26], which supports all transactions in hard-
ware. With the HyTM approach, we can develop and test
transactional programs in existing systems today, and we can
exploit best effort HTM support as it becomes available to
boost performance. As HTM support improves over time,
applications developed using HyTM will automatically ben-
efit from the improvements. Thus HyTM supports and en-
courages an incremental approach to the adoption of HTM
support.

In this paper, we focus onobject based HyTM implemen-
tations, in which we assume data objects have headers that
can be easily located whenever the application accesses an
object. Herlihy et al. [10] introduced the first object-based
dynamic software transactional memory system, DSTM. In
DSTM, in order to access the current value of an object, a
thread must first read aStart pointer associated with the
object in order to determine a currentLocator, then read
the contents of the locator to determine the last transaction
to open the object, then read the status of that transaction to
determine which of two copies of the object indicated by the
locator is current, and finally access that copy.

Recently, several research groups [4, 5, 6, 28] have pro-
posed STM implementations that store object data “in place”
and (optionally, in some cases) collocate object metadata
with objects, thus avoiding costly cache misses caused by
levels of indirection to reach the data, as well as separate
metadata. The performance experiments presented by these
groups confirm the intuition that this approach to structuring
object data results in significantly better performance than
the above-mentioned approaches that involve at least one
level of indirection in all cases. However, all of these imple-
mentations have sacrificed the nonblocking progress proper-

1 TRANSACT 2007

ties provided by the earlier implementations, and most have
implied or argued directly that this is fundamentally neces-
sary in order to store object data in place and collocate meta-
data with object data.

As proponents of blocking STMs argue [4, 6], in many
cases it is possible to mostly avoid the disadvantages of
a blocking implementation in practice. For example, the
SolarisTM schedctl function can discourage (not prevent)
the scheduler from preempting a thread during the blocking
part of a transaction. Nonetheless, without an implementa-
tion that is truly nonblocking, we can still occasionally ex-
perience the disadvantages of blocking implementations. For
example, if one transaction experiences a long delay due to
a page fault or being preempted, this can cause many other
transactions to have to also wait for a long time.

Blocking is more than “merely” a performance concern,
however. For example, as pointed out by Ramadan et al. [27],
it is unacceptable for an interrupt handler to be blocked by
the thread it has interrupted. The design of interrupt handlers
is often significantly complicated by this restriction. TM can
help, but only if it is nonblocking. It is therefore important to
continue research on nonblocking transactional memory im-
plementations, despite the appeal of simpler blocking ones.

In this paper, we show that in fact it isnot necessary to
sacrifice nonblocking progress properties in STMs in order
to store data in place in the common case, and to collocate
metadata with data objects. Specifically, we present Non-
blocking Zero-Indirection Software Transactional Memory
(NZSTM), which stores object data in place in the com-
mon case, resorting to a level of indirection only when a
thread encounters a conflict with a thread that is unrespon-
sive, for example because it is preempted. Blocking STMs
must block in such cases, so claims that excessive overhead
is introduced by using indirection to avoid blocking are un-
convincing.

We have designed a HyTM system, NZTM, in which
transactions can be executed using best-effort HTM support,
but executed using NZSTM if this is not successful. The de-
sign we present is optimized for the case in which HTM sup-
port is available and is able to commit most transactions. Be-
cause hardware transactions usually access objects in place,
object metadata is collocated with the objects themselves,
and transactions executed using HTM do not need to copy
objects they modify, this arrangement should allow us to
achieve near-optimal cache behavior in the common case.

A key difficulty in designing a nonblocking STM that
stores object data in place is the uncertainty that arises when
one transactionT1 is updating an object and another trans-
actionT2 wishes to access the object.T2 cannot simply wait
for to complete because this would result in a blocking im-
plementation.T2 can attempt to informT1 that it should
stop modifying the object, but untilT2 can determine that
T1 has become aware that it should stop, it is not safe for
T2 or other transactions to update the object data in place,

becauseT1 may still overwrite the data. Therefore, it is hard
to see any alternative to storing the correct data somewhere
other than its natural home in this case. This leads to indi-
rection and associated overhead during the period thatT1 is
unresponsive.

NZSTM differs from previous nonblocking STMs in that,
rather than actively aborting a conflicting transaction, we
can “request” that the transaction abort itself, and wait a
short time until it does. If it does so, then the uncertainty
is resolved and we can continue to access the data in place.
Thus, we can generally avoid the overhead of introducing
levels of indirection except when the conflicting transaction
is unresponsive (again, blocking implementations will sim-
ply freeze up in this case). We expect to be able to largely
eliminate the performance gap between previous blocking
and nonblocking object-based transactional memory imple-
mentations by eliminating their levels of indirection.

Several STM proposals [7, 18, 20] improve upon DSTM’s
performance by eliminating a level of indirection in the com-
mon case in which the object is not being modified. Nonethe-
less, all of these proposals still involve at least one levelof
indirection, even in the best case. Similarly, to our knowl-
edge, all previous proposals for using hardware support to
accelerate nonblocking object-based STM implementations
still require at least one level of indirection [12, 15, 30].

The remainder of this paper is organized as follows. In
Section 2, we describe our NZSTM and NZTM designs. In
Section 3, we present preliminary simulation experiments.
Section 4 reports on the current status of our ongoing work
and discusses future work. We conclude in Section 5.

2. NZTM
In this section, we describe NZTM. We first describe the
basic data structures used by NZTM, and then present a
simple object-based STM that stores object data in place and
collocates metadata with objects, but is blocking. Next we
describe two ways to extend this STM to achieve our non-
blocking NZSTM, one using HTM support, and one that can
be used in existing systems today. Finally we describe how
to use HTM support to execute transactions in a way that is
compatible with transactions executed in the STM, yielding
our hybrid NZTM design.

2.1 NZTM Data Structures

The following description will be best understood by readers
already familiar with DSTM [10]. The programming model
for NZTM is the similar to the one for DSTM, and data
structures such as theTMThread andContentionManager
structures are mostly the same as for DSTM. TheTransaction

structure is also similar to the one in DSTM—it contains a
Status that can beActive, Aborted, orCommitted. How-
ever, NZTM’sTransaction objects additionally contain an
AbortNowPlease flag, which is used to request that the
transaction abort itself (see Figure 1). This flag is stored to-

2 TRANSACT 2007

Figure 1. The Transaction data structure used by NZTM.
TheAbortNowPlease field is initially false.

gether with theStatus field, so that both may be accessed
atomically using aCompare&Swap (CAS) instruction.

TheNZObject structure is analogous to DSTM’sTMObject
structure in that it encapsulates a program object that can be
accessed by NZTM transactions. TheNZObject structure
contains the following fields (Figure 2): TheWriterTXN
field, if non-NULL, points to the last transaction to open this
object for writing. TheReaderList field points to a linked
list of readers of this object. TheClone field points to a func-
tion that can be used for creating a copy of the object. The
OldData field points to a backup copy of the object while
a transaction that modifies the object is in progress. Finally,
the Data field contains the actual object data. Because the
object data is stored at a fixed offset from the start of the
object, there is no level of indirection required to access it.

After anNZObject is initialized,Data contains the initial
value of the object, and all other fields (exceptClone) are
NULL.

2.2 Simple Blocking STM Algorithm

The simple blocking STM described in this section provides
a basis for our non-blocking NZSTM and for our hybrid
variant NZTM that can execute transactions using HTM
support if available. Our primary objective to date has been
to show that we can implement a non-blocking STM that
can interoperate with transactions executed using HTM, with
object data stored in place in the common case and object
metadata collocated with the object data, and to evaluate the
performance that can be achieved with such a system when
HTM is usually effective. We have not experimented with
the numerous alternative design decisions or with different
contention management schemes in the STM.

As in DSTM, a thread begins a transaction by creating
a newTransaction object with its status set toActive.
It then proceeds to execute its transaction, “opening” each
object it accesses, either for reading or for writing. When it
completes execution of the transaction, it attempts to change
its status fromActive to Committed. During execution,
another transaction that detects a conflict with this one may
decide to wait for it or to attempt to abort it, according to the
decision of a contention manager.

Unlike DSTM and other STMs, a transaction does not ex-
plicitly abort a conflicting transaction, but insteadrequests
that it abort itself; this request is made by changing the
transaction’sAbortNowPlease field to true (while confirm-

Figure 2. The structure of anNZObject. The Data field is
the actual data and can have any size or structure.

ing that itsStatus is still Active). When the transaction
observes that itsAbortNowPlease flag is true, it sets its
Status field to Aborted. The requesting transaction waits
for this to occur before proceeding to open the object on
which the conflict occurred. Because of this waiting, the sim-
ple STM is blocking.

Normally, theData field of an NZObject contains the
current value of the object. A transaction that wishes to
modify the object acquires exclusive ownership of the ob-
ject by placing a pointer to itsTransaction in the object’s
WriterTXN field. Before modifying theData, the transac-
tion creates a copy of it (using the object’sClone function),
and makes the object’sOldData field point to the copy. This
copy is needed in case the transaction aborts, in which case
it can be copied back toData, thus undoing the transac-
tion’s effects. Because the copy is not stored in place with
the NZObject (as in the Shadow Factory of DSTM2 [9],
which incurs 100% space overhead as a result), creating the
copy may incur additional cache misses, as compared to a
pure blocking STM, though we have some ideas for reduc-
ing this effect. Nonetheless, our approach does eliminate the
level of indirection present in previous nonblocking STMs
for transactions executed using HTM as well as for read op-
erations of NZSTM in the common case. Because we are
concentrating for now on the case in which HTM support is
available and usually effective, and because reads are usu-
ally much more common than writes [2], this overhead is
imposed only in uncommon cases. We have yet to evaluate
a version of NZSTM that is optimized for existing systems
(without HTM support), but when we do, we may find it
preferable to use incremental backup logs, rather than copy-
ing entire objects.

We use avisible readers [13, 19] mechanism, in which
a transaction opening an object for reading inserts a pointer
to itself into the object’sReaderList; this way, transactions
opening the object for writing can detect conflicts with trans-
actions reading the object, and can decide to abort them if
necessary to resolve the conflict. (The tradeoffs between in-
visible, semi-visible, and visible read mechanisms are much
the same for NZTM as for other STM and HyTM systems;
we have made this choice to optimize for systems in which

3 TRANSACT 2007

HTM is available and usually effective. In this case, the ben-
efit of making hardware transactions faster should outweigh
the cost of using visible readers for software transactions.)

With this overview in mind, we now explain in more
detail how transactions open objects for reading and for
writing.

Open for write If a transactionT that is opening an object
for writing finds that the object’sWriterTXN field points to
T ’s Transaction, thenT has previously opened this object
for writing so it simply returns a pointer to theData field.
Otherwise,T must ensure that there are no conflicts with
other transactions before acquiring ownership of the object.
If the WriterTXN field is NULL, or points to a committed
or an aborted transaction, there is no conflict with writing
transactions, soT can atomically change theWriterTXN
field to point to itsTransaction (using CAS to ensure it
has not changed in the meantime). IfWriterTXN points to an
active transaction, then the contention manager is consulted,
and depending on the outcome,T either waits or requests
that the active transaction aborts itself, as described above.

At this point, there are no conflicts with other writing
transactions, butT still needs to check for conflicts with
reading transactions. To do so, it traverses theReaderList

looking for active transactions. For each active transaction it
finds (other than itself),T consults the contention manager
to decide whether to wait or to request the other transaction
to abort. If T is in the ReaderList, then it is upgrading
its access to the object from read to write. In this case, be-
causeT already owns the object during this traversal, there
is no risk that another transaction modified the object after
T opened the object for read and beforeT acquired it for
write unless that transaction has requestedT to abort. There-
fore,T can ensure the upgrade is consistent by checking its
AbortNowPlease flag after acquiring ownership of the ob-
ject. If it finds the flag set, it changes its status toAborted,
and returns a NULL pointer, indicating to the caller that
the transaction has aborted. (In our prototype, objects are
opened using macros that check whether the returned pointer
is NULL, and control is diverted to an abort handler if it is.)

When all potential conflicts have been resolved, if the
object was owned by an aborted transaction immediately
beforeT acquired it,T restores the backup copy (indicated
by OldData) if there is one. Otherwise,T creates a new
backup copy using theClone function and stores it under
theOldData pointer. Finally,T returns a pointer to the data.

Open for read Next we describe how transactionT opens
an object for reading. First, ifT already owns the object
for writing (i.e., WriterTXN points toT ’s Transaction),
T simply returns a pointer to theData field. Otherwise,T
checks for conflicts with writing transactions and resolves
them if necessary, as described above.

T then temporarily acquires exclusive ownership of the
object by swapping theWriterTXN to point to itself. Next,T
adds itself to theReaderList, checks whether the previous

writer transaction it replaced (if any) was aborted, and if so
restores the backup if one exists. After restoring the backup,
T stores NULL to theOldData field. Finally,T relinquishes
exclusive ownership of the object by swappingWriterTXN
to NULL, and returns a pointer to theData field.

The reason for temporarily acquiring exclusive ownership
of the object while adding an entry into theReaderList is
not to protect theReaderList, which is updated using stan-
dard nonblocking mechanisms in preparation for the modifi-
cations we describe later to make our STM nonblocking. In-
stead, it is to avoid a race condition in which another transac-
tion acquiring the object for write access does not encounter
T on theReaderList and thus fails to resolve the conflict
between itself andT . Other techniques are possible, but this
simple approach suffices for our purposes so far.

Before T returns a pointer to theData field, it checks
its AbortNowPlease field, and aborts and returns NULL
(relinquishing ownership of the object first if necessary) if
it is set. This is necessary to ensure that the set of objects
the transaction has opened for read are consistent: ifT has
been aborted due to a conflict with another transaction on
another object while attempting to open this object for read,
the reads may not be consistent, in which case it is not safe
to return to user code.1 Validating at other times, while not
strictly necessary, may be desirable for performance reasons.
For example, validating before asking another transactionto
abort and/or before waiting for another transaction that we
have requested to abort may avoid unnecessary aborts and
waiting.

2.3 NZSTM: Making the STM Non-Blocking

In this section, we describe two ways to make the simple
STM described above nonblocking, thereby ensuring that a
transaction can always make progress, even in the face of
conflicts with unresponsive transactions.

Using Short Hardware Transactions

In the simple blocking STM described above, the reason
a transaction that requests another to abort must wait for
it to confirm that it has aborted is that it is not safe to
restore the backup to theData field and continue to access
the object in place if there is still a possibility that the
victim transaction might store to theData field. Such “late
stores” can be avoided by making them conditional upon
the storing transaction’sAbortNowPlease flag not being
set. This can be achieved using short HTM transactions
that read theAbortNowPlease flag, confirm it is false, and
perform the store if so. This method can be used provided the
HTM support guarantees that such simple transactions will

1 Because many object-based systems execute in managed runtime environ-
ments that can catch and mask exceptions, this may be unnecessary in some
cases. But given the complication involved in ensuring that all possible bad
behavior that could arise from inconsistent reads (including infinite loops
that do not raise any exceptions), and the low cost of validating in our sys-
tem, we prefer to avoid relying on such mechanisms for now.

4 TRANSACT 2007

always (eventually) succeed, i.e., that no such transaction
will deterministically fail. This idea was first proposed in
[23]. Next we explain how to make the simple blocking
STM nonblocking, resulting in our NZSTM, even if no HTM
support is available or the HTM support does not make such
a guarantee.

Displacing data

We can also make the simple blocking STM described above
nonblocking by temporarily displacing the logical data into
a different location than theData field of the NZObject.
Because previous nonblocking object-based STMs [7, 10,
18, 20] involve at least one level of indirection in all cases,
we can “inflate” an object and use techniques like existing
object-based STMs use when an aborted owner is unrespon-
sive.

For now our design uses a DSTM-like approach when an
object needs to be inflated. Because DSTM’sStart object
is just a pointer, we can integrate it into NZSTM by using
theWriterTXN field as aStart pointer, and indicating that
it should be treated as such using the low order bit of the
pointer. We expect the need to inflate objects to be rare, so
the overhead of using a DSTM-like inflated object is proba-
bly acceptable in general; nevertheless, we may investigate
reducing this cost in the future using approaches like those
in the literature that aim to improve on DSTM.

We now describe this approach in more detail. When a
transactionT has requested the current owner of an object to
abort, and the owner has not responded,T may decide not to
wait any longer, and to inflate the object into a DSTM-like
object. To do so,T creates a DSTMLocator; points the
locator’s Transaction field to T ’s Transaction; points
the locator’sOld field to the backup copy created by the
unresponsive transaction or to theData field if there isn’t
one; and points the locator’sNew field to a private copy of
this backup created using theClone function. NZSTM’s
Locator object has an additional fieldAbortedTXN, which
points to theTransaction of the unresponsive transaction.

Next,T attempts to swapWriterTXN from the unrespon-
sive transaction’sTransaction to the newly created loca-
tor, setting the low-order bit to 1 to indicate that the ob-
ject now points to a DSTM-like locator, rather than to an
NZSTM Transaction. This results in a state like the one
illustrated in Figure 3. Henceforth, the object is treated like
a DSTM object (with the addition that each newLocator
introduced contains theAbortedTXN field from the replaced
Locator, thus preserving the identity of the unresponsive
transaction).

Once the unresponsive transaction finally aborts itself,
so we know it is no longer modifying theData field of the
object, it is desirable to restore the object to being a nor-
mal NZObject so that subsequent transactions can again
enjoy the performance benefits of accessing the object in
place. This can be achieved by a transactionT as follows.
T opens the object for writing according to the normal

Figure 3. An NZObject immediately after being trans-
formed to behave in the same manner as a DSTMTMObject.
The LSB of theWriterTXN indicates how the object should
be interpreted.

DSTM method, except that it stores a pointer to its own
Transaction in the AbortedTXN field of the new locator
it installs. This establishesT as the transaction that must
be aborted and respond before a subsequent attempt to re-
store the object can begin, in caseT does not complete the
restoration first.

NextT stores intoOldData a pointer to the current object
value (indicated by theOld pointer in the newly installed
Locator), so that it will serve as a backup in caseT aborts.
Then T attempts to replace the locator it just installed in
WriterTXN with a pointer to its ownTransaction (setting
the low-order bit to 0 to indicate that the object is now
back in normal mode). If this succeeds,T simply copies
the current object value to theData field and proceeds as
normal.

BeforeT swaps itsTransaction into WriterTXN, other
transactions may wish to access the object, in which case
they can proceed as usual, opening the object accord-
ing to the modified DSTM method described above. If a
transaction is successful in doing so beforeT swaps its
Transaction intoWriterTXN, thenT ’s CAS onWriterTXN
will fail, so T will know that it did not succeed in restoring
the object. In this case, it aborts itself in order to allow a
subsequent restoration attempt to succeed (because it is now
the transaction identified byAbortedTXN).

One subtle point with this mechanism is that a slow trans-
action that has started to restore an object might store an
out-of-date value intoOldData. However, this is not a prob-
lem, because subsequent attempts to restore the object will
not begin until after this transaction acknowledges that ithas
aborted. Until thenOldData is irrelevant because the object
remains inflated.

5 TRANSACT 2007

2.4 NZTM

NZTM is a HyTM system that uses NZSTM for software
transactions. Like the HyTM system presented in [3], trans-
actions can be attempted using HTM and if (repeatedly)
unsuccessful, are eventually retried using NZSTM software
transactions.

When a transaction executed using HTM opens an object,
it checks for conflicts with software transactions, and explic-
itly aborts itself if any are discovered; it can then retry ei-
ther in hardware or in software, according to decisions made
by the contention manager. If no conflict is discovered, the
transaction can safely proceed because a subsequent conflict
that arises with a software transaction will modify data that
the hardware transaction has read, thus preventing it from
committing successfully.

A variety of approaches to checking for conflicts with
software transactions are possible. Generally, more conser-
vative approaches are simpler, but are more likely to re-
vert to software, which is harmful to performance. Differ-
ent schemes can be used together. The simplest and most
conservative scheme is as follows. A hardware transaction
opening an object for reading checks that theWriterTXN

field is NULL, aborting if not, and a hardware transaction
opening an object for writing checks that bothWriterTXN
andReaderList are NULL, aborting if not.

This scheme is conservative because ifWriterTXN points
to an aborted or committed transaction, there is no conflict
with writers. Similarly, it may be that theReaderList con-
tains pointers to only aborted and committed transactions,in
which case there is no conflict with readers. Therefore, in ei-
ther case, hardware transactions could look in more detail to
determine if there is a real conflict, checking the status of the
transaction identified byWriterTXN to check for conflicts
with writers and/or traversing theReaderList checking the
status of each transaction in the list to see if any (other than
the executing transaction) are active. In case we do check the
status of theWriterTXN, we must return a pointer toData if
the identified transaction is committed and returnOldData

if it is aborted. In the simple scheme described so far, if the
low-order bit ofWriterTXN is set, we would simply abort
the hardware transaction.

Hardware transactions can also improve the performance
of subsequent transactions that access the object (either
in hardware or in software) by settingWriterTXN and
ReaderList to NULL in some cases. Specifically, if a
hardware transaction determines that there are no active
transactions in theReaderList, it can setReaderList to
NULL, eliminating the need for subsequent hardware trans-
actions to traverse the list. Similarly, ifWriterTXN identi-
fies a committed transaction, the hardware transaction can
setWriterTXN back to NULL. If WriterTXN identifies an
aborted transaction, this isnot safe, because the current value
is in OldData; it would be safe to setWriterTXN to NULL
if it also copiedOldData back toData.

Finally, we note that hardware transactions can even ac-
cess objects that are inflated to DSTM-like objects. Hard-
ware transactions can modify the current object version
(identified by theOld or New field of the currentLocator,
depending on the status of the transaction identified by the
locator, provided it is committed or aborted) in place, with-
out replacing the locator, because any software transaction
that attempts to open the object will modifyWriterTXN,
thereby preventing the hardware transaction from commit-
ting successfully. Similarly, hardware transactions can par-
ticipate in resetting the object to a normalNZObject by
following the same code as a software transaction would.
However, if a hardware transaction encounters a situation in
which a software transaction would request another to abort,
then it must abort itself, because, without more sophisticated
HTM support than we assume, it is not useful to request the
transaction to abort and then wait for it to abort itself be-
cause when the software transaction aborts itself, this causes
the hardware transaction to abort anyway.

3. Evaluation
In this section we report on an environment created to allow
us to evaluate NZTM and NZSTM.

3.1 Experimental Environment

We used a simulation framework based on Virtutech Simics
[16] in conjunction with customized memory models built
on the University of Wisconsin GEMS [22] and based on
the model used for LogTM [24]. The simulator models pro-
cessors have best-effort HTM support as well as LogTM
support, with instructions for begin-transaction, commit-
transaction, and abort-transaction.

For best-effort HTM, begin-transaction includes an ad-
dress where execution is resumed when the transaction is
aborted. These instructions were simulated using Simics
magic instructions (special no-op instructions Simics can
catch and pass to the underlying memory model). This sim-
ulation for the best-effort HTM uses L1 and L2 cache as
transactional cache; therefore hardware transactions arelim-
ited by the size of the L2 cache for their read/write-sets.

The simulated system for all the simulation runs is a
SPARCR©/SolarisTM Sun FireTM server, and the parameters
used were based on those used in LogTM (Table 1). This
model assumes a traditional SMP, where each processor is
single-threaded (single strand) with no shared caches.

3.2 Benchmarks

We utilized four microbenchmarks with varying workloads
and bottlenecks to test the Transactional Memory imple-
mentations developed. These benchmarks have been used
by other Transactional Memory implementations such as
DSTM and RSTM. These benchmarks are only our first step
towards understanding the behavior of Transactional Mem-
ory programs and developing benchmarks that are more rep-
resentative. Following is a description of the benchmarks:

6 TRANSACT 2007

Parameter System Model Settings
Processors 16, 1 GHz, single-issue, in-order, non-memory Instructions per Cycle (IPC) = 1
L1 Instruction Cache 16 Kilobyte 4-way, 1-cycle latency
L1 Data Cache 16 Kilobyte 4-way, 1-cycle latency
L2 Cache 4 Megabyte 4-way unified, 12-cycle latency
Memory 8 Gigabyte, 80-cycle latency
Directory Full-bit vector sharer list; migratory sharing optimization; Directory cache, 6-cycle latency
Interconnection Network Hierarchical switch topology, 14-cycle link latency

Table 1. Simulated system model parameters. Based on [24].

LinkedList A concurrent set implemented using a single
sorted linked list. Each thread randomly chooses to insert,
delete, or look-up a value in the range 0..255, with the
distribution of operations being 10:10:80, respectively.
Based on the code that comes with DSTM [10].

RBTree Same benchmark as LinkedList, with the concur-
rent set instead implemented by a red-black tree. More
potential for concurrent operations than LinkedList, al-
though re-balancing the tree when a node is inserted or
deleted sometimes results in changes near the root, thus
conflicting with most ongoing operations. Based on the
code that comes with DSTM [10].

Hash Same benchmark again, this time using a chained hash
table in which each bucket consists of a sorted linked list.
The hash table has 256 buckets. Thus, because values are
chosen from 0..255 in the benchmark, there are no hash
collisions. Thus parallelism for this benchmark should be
high as conflicts only occur when two threads choose the
same value at around the same time. Based on the code
that comes with RSTM [21].

LFUCache A web cache simulation with least-frequently-
used page replacement. It uses a large array-based index
of 2048 entries, and a smaller binary-tree-based priority
queue of 255 entries to track the pages that are accessed
the most in the simulation. Worker threads repeatedly ac-
cess a page, and a real web cache workload is approxi-
mated by randomly choosing pages from a Zipf distribu-
tion with exponent 2. Based on the code that comes with
RSTM [21].

3.3 Experiments

Each benchmark was run for 1, 2, 4, 8 and 16 threads each
running on its own processor. We first initialize the relevant
data structures and then each thread traverses these struc-
tures in order to load them into the cache memory. Then
we begin measurements, recording the simulated machine’s
elapsed clock cycles required for all threads to complete
2,000 operations each.

We evaluated four different mechanisms for executing
transactions:

Simple Lock The system does not take advantage of HTM
support. A single global lock is used. A thread must ac-
quire the lock before beginning a transaction and release
it on committing.

LogTM The system takes advantage of HTM support by us-
ing the same mechanism described in LogTM [24]. To
simulate LogTM we used the code which comes with
Wisconsin GEMS 1.4 [22]. These transactions, unlike the
best-effort hardware support we employ for NZTM, are
unbounded and not limited by the size of L2 cache. More-
over, LogTM transactions do not impose any software
overhead on the benchmarks.

NZSTM The system assumes no hardware support and runs
by using pure NZSTM software transactions. Perfor-
mance seems to be poor in this area as we have optimized
NZSTM for hardware support. However, we are aware of
software optimizations and different design points that
can be implemented to enhance performance, and are
planning on including them in future work.

NZTM The system takes advantage of best-effort HTM
support, built on modified LogTM (GEMS 1.4 [22])
code. However, it utilizes a First-In-Fist-Out (FIFO) con-
tention management scheme similar to the one employed
by TLR [25], and as mentioned earlier, limits the size
of the transactions by the size of the L2 cache for their
read/write-sets. Transactions executed using this best-
effort HTM are augmented to check on a per-object basis
for conflicts with transactions executed using NZSTM.
When a hardware transaction aborts, the thread retries the
execution zero or more times, then switches to NZSTM
to execute the transaction. NZTM/HTM/3 indicates that
the system attempts the transaction three times in hard-
ware and finally falls back onto software (NZSTM) trans-
actions, while NZTM/HTM/16 tries sixteen times instead
of three before falling back onto software.

We chose to compare the performance of NZTM against
Simple Lock and LogTM for two reasons. First, Simple
Lock demonstrates the performance that can be achieved in
existing systems today (with no HTM support) with the same
level of programming complexity as using transactions. This
provides a baseline scenario in a multithreaded environment,

7 TRANSACT 2007

because such schemes are known to scale very poorly. On
the other hand, the near-minimal overhead imposed on hard-
ware transactions by LogTM sets a performance standard
when there are no conflicts, so this allows us to evaluate the
performance and scalability of our system under nearly ideal
conditions.

Because we paid careful attention to cache performance
when designing NZTM, we expected that it should perform
similarly to LogTM in the absence of failure of the best-
effort hardware transactions. When the best-effort HTM
transactions fail due to conflicts, however, we can ex-
pect different performance. If that happens, NZTM invokes
NZSTM, switching to a software-based scheme that avoids
the serialization of a lock, but brings the overhead of exe-
cuting transactions using STM as compared to HTM. Thus
the failure of best-effort hardware transactions could cause
a significant penalty. Our goal is to compare these schemes
as a first step in evaluating the effectiveness of the hybrid
approach, though we note that the software for NZSTM is
not currently well tuned.

None of the benchmarks push the resource limits of the
best-effort HTM, so the only reason for transactions to abort
is cache-coherence conflicts. We have not had time to ex-
periment extensively with the optimal number of retries, but
we did find that retrying several times generally resulted in
better performance.

We have not yet implemented the non-blocking capabil-
ity of NZTM. We are currently working on implementing
the code for this, though implementing it would have a triv-
ial effect on our reported results: the additional overhead
incurred is merely confirming that the low-order bit of the
WriterTXN pointer (which must be read anyway) is zero.
Because the bit is one only when one software transaction
has conflicted with another that is unresponsive, in the com-
mon case execution of hardware transactions will otherwise
be the same as in our current implementation.

As noted in Section 2.4, HTM-supported transactions
may use more or less sophisticated methods for determin-
ing when to abort. Because NZSTM is currently untuned,
we wanted to minimize the frequency of aborting, so we
implemented the most sophisticated scheme that is com-
patible with our current implementation. Thus, hardware
transactions check the status of the transaction identified
by WriterTXN (if any), and also traverse theReaderList,
checking that there is no conflict with software readers (if
any). We have not yet experimented with the other alterna-
tives.

3.4 Results

Figure 4 shows the rate at which transactions are completed
for each of the four benchmarks. In all cases Simple Lock
performance is comparable to NZTM for a single thread, but
degrades rapidly for additional threads.

For Hash, the transaction execution rates for the LogTM
and NZTM are close, with LogTM slightly better than

NZTM in all cases. NZSTM’s performance is significantly
worse than either of these two schemes; however we note
that when compared to Simple Lock, it scales better and
outperforms it at 4 processors and above.

RBTree tree shows similar results to Hash, with LogTM
outperforming NZTM at all threading levels. The larger mar-
gin than for Hash probably reflects the fact that RBTree
opens multiple objects, increasing the overhead for NZTM
but not for LogTM. However, RBTree performance does not
scale for NZSTM, possibly due to the contention at the root
node of the tree.

LFUcache similarly shows nearly the same results, with
LogTM and NZTM showing roughly a 25% improvement in
performance going from one to two processors, but through-
put actually declining by approximately the same amount as
more processors are added.

LinkedList shows interesting behavior. While LogTM
shows superior performance in all cases up to 8 threads,
NZTM shows nearly linear improvement in performance
up to 16 processors, while LogTM exhibits much smaller
improvements, and actually declines beyond 8 processors.
Although we have not yet investigated the reason for this,
a possible explanation is the different ways NZTM and
LogTM manage contention.

3.5 Discussion

The single-threaded results shed some light on the overhead
of the various schemes in the absence of concurrency. Al-
most in all cases, LogTM outperforms the other schemes be-
cause its only overhead is in the hardware itself, and could
be presented as a small one-time overheadper transaction.
Its advantage over Simple Lock probably results from the
fact that Simple Lock instead performs a CAS operation
per transaction to acquire the lock. While the overhead for
NZTM is also read-only, this overhead is incurredper ob-
ject.

As the number of processors running the benchmarks in-
creases, performance for coarse-grained locking degrades
dramatically, while LogTM and NZTM both show signifi-
cant improvement for all but LFUCache, which shows no
significant improvement for any scheme beyond two threads.

We note that the number of times we attempt a transac-
tion in hardware, when using NZTM, seems to only mat-
ter after exceeding a certain threshold. For example, we
observe in the LinkedList benchmark that NZTM/HTM/3
and NZTM/HTM/16 have similar performance except for 16
processors. This could be explained by the fact that at 16
processors many more transactions abort and fallback onto
software transactions. This might imply that a conservative
approach when setting the number of tries in hardware, fa-
voring a higher number, is preferable.

We also note that Simple Lock uses a single traditional
lock, thus serializingall operations. While using a Reader-
Writer lock would allow us to execute lookups in parallel,
this entails at least some additional programming complex-

8 TRANSACT 2007

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16

T
xn

s
pe

r
10

00
 c

yc
le

s

Number of threads

LOGTM
NZTM/HTM/16
NZTM/HTM/3
LOCK
NZSTM

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8 16

T
xn

s
pe

r
10

00
 c

yc
le

s

Number of threads

(a) (b)

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16

T
xn

s
pe

r
10

00
 c

yc
le

s

Number of threads

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16

T
xn

s
pe

r
10

00
 c

yc
le

s

Number of threads

(c) (d)

Figure 4. Total throughput: (a) Hash (b) LinkedList (c) RBTree (d) LFUCache.

ity over a transactional programming model, and a signifi-
cant complexity in medium to large systems with multiple
such locks, because in this case it is the programmer’s re-
sponsibility to ensure that the right locks are held in the right
modes for correctness, and that deadlock is not possible.

The results seem to confirm our expectations that when
running more than one thread, NZTM provides dramatic im-
provements over the software-only methods using hardware
support of modest complexity (compared to LogTM). Fur-
thermore, when conflicts become frequent, the switch to the
software-based NZSTM does not seem to impose much of
an overhead on performance. While admittedly preliminary,
we believe these results make a strong case for further inves-
tigation of this approach.

4. Status and Ongoing Work
We still have plenty of work to do in developing and fully
evaluating our system. Nonetheless, as described in this
workshop paper, we have already developed a prototype im-
plementation as well as a simulator that allows us to evaluate
the performance of NZTM in systems with support for hard-
ware transactional memory. Our preliminary performance
results, together with planned improvements and optimiza-
tions, give us confidence that our careful attention to cache

behavior will allow us to achieve implementations that are
very competitive with previous blocking implementations,
while eliminating their need to wait for unresponsive trans-
actions.

While we have introduced a novel approach to structuring
transactional data and metadata in order to significantly im-
prove performance over previous nonblocking STM and Hy-
brid TM systems, NZSTM and NZTM are subject to many
of the design alternatives and tradeoffs encountered in pre-
vious work. We have yet to apply the lessons learned from
this other work in the context of NZTM. We are particu-
larly interested in the observation due to Lev et al. [14] that,
by supporting the execution of transactions by different im-
plementations in different “modes”, we can not only reduce
overhead on transactions executed in hardware, but also al-
low more flexibility in the implementation of software trans-
actions.

We are currently optimizing NZSTM to work better as a
software-only scheme. This is being done by allowing for
invisible reads and investigating the integration of invisible
reads with hardware transactions. Moreover, since memory
allocation is an integral part of the operation of NZSTM,
we are also investigating the broad area of scalable mem-

9 TRANSACT 2007

ory allocators and garbage collectors and how those can be
leveraged for our advantage.

We are also currently implementing and testing the com-
potent of NZSTM that makes it nonblocking. Moreover,
most of the testing performed so far has been on simulated
environments, therefore we are planning to conduct a thor-
ough test of NZSTM on a real multi-processor machine.

Benchmarking is also an important aspect of this en-
deavor. Currently we are only using four simple benchmarks.
We are investigating which other benchmarks might be suit-
able for testing transactional memory schemes and prepar-
ing to implement these benchmarks and apply our schemes
to them.

5. Concluding Remarks
We have introduced NZSTM, an object-based software
transactional memory that is nonblocking, and eliminates
the expensive levels of indirection in previous such STMs in
all but the uncommon case of a conflict with an unresponsive
thread. Furthermore, we have shown how transactions can be
executed using best effort hardware transactional memory if
it is available, yielding our hybrid transactional memory sys-
tem NZTM.

We note that researchers at the University of Rochester
[31] have had similar insights about the importance of elimi-
nating indirection to improve on the performance of previous
nonblocking STM. Their work was concurrent with and in-
dependent of ours, and they concentrate on a different design
point, namely the use of special “Alert On Update” hardware
to make nonblocking progress properties possible. While our
approach is designed explicitly to be able to take advantage
of special HTM support to achieve similar benefits, our pro-
posal nonetheless includes a nonblocking, zero-indirection
STM that can be used in existing systems today, without ad-
ditional hardware support.

Marathe and Moir [17] showed that it is possible to im-
plement nonblocking word-based STM that eliminates much
of the overhead of previous nonblocking word-based STMs
by storing data in place in the common case, resorting to
more complicated and expensive techniques to displace data
only when necessary because of a conflict with an unrespon-
sive transaction. The design philosophy for NZ(S)TM was
inspired in part by work of Marathe and Moir, but the de-
tails are quite different because they addressed word-based
STMs, which cannot employ object headers and cannot col-
locate metadata with data (at least if they are to be integrated
into compilers for languages such as C and C++, where we
cannot dictate how data is laid out in memory).

Acknowledgments
We are grateful to Dan Nussbaum for useful conversations
related to our simulation work, and especially to Kevin
Moore for his help getting us started with the Wisconsin sim-
ulation tools. We thank Jayaram Bobba for his comments on

the implementation of the Wisconsin simulation tools, and
Virtutech AB for the Simics academic site license provided
for the University of Auckland.

References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,

and S. Lie. Unbounded transactional memory. InProc. 11th
International Symposium on High-Performance Computer
Architecture, pages 316–327, Feb. 2005.

[2] J. Chung, H. Chafi, A. McDonald, C. C. Minh, B. D.
Carlstrom, C. Kozyrakis, , and K. Olukotun. The common
case transactional behavior of multithreaded programs.
In Proc. 12th Annual International Symposium on High
Performance Computer Architecture, 2006.

[3] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. InASPLOS-
XII: Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems, pages 336–346, New York, NY, USA,
2006. ACM Press.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In
Proc. 20th Intl. Symp. on Distributed Computing, September
2006.

[5] D. Dice and N. Shavit. What really makes transactions faster?
In TRANSACT Workshop, June 2006.
http://research.sun.com/scalable/pubs/TRANSACT2006-
TL.pdf.

[6] R. Ennals. Software transactional memory should not be
obstruction-free, 2005.
http://berkeley.intel-research.net/rennals/pubs/
052RobEnnals.pdf.

[7] K. Fraser. Practical Lock-Freedom. PhD thesis, Cam-
bridge University Technical Report UCAM-CL-TR-579,
Cambridge, England, Feb. 2004.

[8] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and
consistency. InProc. 31st Annual International Symposium
on Computer Architecture, June 2004.

[9] M. Herlihy, V. Luchangco, and M. Moir. A flexible
framework for implementing software transactional memory.
In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 253–262, New
York, NY, USA, 2006. ACM Press.

[10] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.
Software transactional memory for supporting dynamic-sized
data structures. InProc. 22th Annual ACM Symposium on
Principles of Distributed Computing, pages 92–101, 2003.

[11] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proc. 20th Annual International Symposium on Computer
Architecture, pages 289–300, May 1993.

[12] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen.
Hybrid transactional memory. InProc. ACM SIGPLAN Sym-

10 TRANSACT 2007

posium on Principles and Practice of Parallel Programming,
Mar. 2006.

[13] Y. Lev and M. Moir. Fast read sharing mechanism for
software transactional memory, 2004.
http://research.sun.com/scalable/pubs/PODC04-Poster.pdf.

[14] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased
Transactional Memory. Transact 2007 workshop, Aug. 2007.
http://research.sun.com/scalable/pubs/TRANSACT2007-
PhTM.pdf.

[15] S. Lie. Hardware support for unbounded transactional mem-
ory. Master’s thesis, Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science,
May 2004.

[16] P. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Lars-
son, F. Lundholm, A. Moestedt, J. Nilsson, P. Stenstrom, and
B. Werner. SimICS/sun4m: A virtual workstation. InPro-
ceedings of the USENIX 1998 Annual Technical Conference
(USENIX ’98), June 1998.

[17] V. Marathe and M. Moir. Efficient nonblocking software
transactional memory (poster paper). InPPoPP ’07:
Proceedings of the ACM SIGPLAN symposium on Principles
and practice of parallel programming, New York, NY, USA,
2007. ACM Press.

[18] V. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive
software transactional memory. InProc. 19th Intl. Symp. on
Distributed Computing, September 2005.

[19] V. J. Marathe and M. L. Scott. A qualitative survey of modern
software transactional memory systems. Technical Report TR
839, Computer Science Department, University of Rochester,
June 2004.

[20] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. Scherer III, and M. L. Scott. Low-
ering the overhead of nonblocking software transac-
tional memory. Transact 2006 workshop, June 2006.
http://www.cs.rochester.edu/u/scott/papers/
2006TRANSACT RSTM.pdf.

[21] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisen-
stat, W. N. Scherer III, and M. L. Scott. The rochester
software transactional memory runtime, 2006.
http://www.cs.rochester.edu/research/synchronization/rstm/.

[22] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset.SIGARCH Comput. Archit. News,
33(4):92–99, 2005. 1105747.

[23] M. Moir. Hybrid transactional memory, July 2005.
http://research.sun.com/scalable/pubs/Moir-Hybrid-2005.pdf.

[24] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. InProc.
12th Annual International Symposium on High Performance
Computer Architecture, 2006.

[25] R. Rajwar and J. R. Goodman. Transactional lock-free
execution of lock-based programs.SIGARCH Comput.
Archit. News, 30(5):5–17, 2002.

[26] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. InProc. 32nd Annual International Symposium
on Computer Architecture, pages 494–505, Washington, DC,
USA, 2005.

[27] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann,
A. Bhandari, and E. Witchel. MetaTM/txLinux: Transac-
tional memory for an operating system. InProc. 34th Annual
International Symposium on Computer Architecture, 2007.

[28] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. Mcrt-stm: a high performance software trans-
actional memory system for a multi-core runtime. InPPoPP
’06: Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages
187–197, New York, NY, USA, 2006. ACM Press.

[29] N. Shavit and D. Touitou. Software transactional memory.
Distributed Computing, Special Issue(10):99–116, 1997.

[30] A. Shriraman, V. J. Marathe, S. Dwarkadas, M. L.
Scott, D. Eisenstat, C. Heriot, W. N. Scherer III, and
M. F. Spear. Hardware acceleration of software trans-
actional memory. Transact 2006 workshop, June 2006.
http://www.cs.rochester.edu/u/scott/papers/
2006TRANSACT RTM.pdf.

[31] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas,
and M. L. Scott. Nonblocking transactions without indirec-
tion using alert-on-update. InProceedings of the 19th ACM
Symposium on Parallelism in Algorithms and Architectures,
June 2007.

[32] F. Tabba. Practical transactional memory: The hybrid
approach. Master’s thesis, University of Auckland, Auckland,
New Zealand, Feb. 2007.

11 TRANSACT 2007

