
Transact `07

Transactional Memory and 
Hardware Primitives

Craig Zilles
University of Illinois at Urbana-Champaign



Craig Zilles Transact `07 2

The Virtues of a “Best Effort” Hardware TM

Clean Architecture: xbegin <PC>, xend, xabort

 Permits a high-performance implementation
 No observable intermediate states
 e.g., don’t want to expose coherence states in ISA

 Good forward compatibility (if best effort)
 can be implemented as branch, invalid opcodes

 Same basic hardware useful for:
 Hybrid TM, SLE, Compiler Optimization



Craig Zilles Transact `07 3

Hardware Atomicity for Reliable 
Software Speculation [ISCA 2007] 

 Greatly simplifies implementing speculative compiler optimizations
 e.g., we (correctly) implemented partial inlining in 6 hours
 Must identify un-handled cases, but not generate fix-up code

 Allows pushing the bounds of compiler speculation

VS.



Craig Zilles Transact `07 4

Is “best effort TM” enough for TM?

 Dealing with best effort limitations: HyTM
 HTM for small transactions (hopefully common)
 STM for large/long running transactions

 HyTM Challenge: HW not violating SW isolation
 HW transactions snoop STM metadata

• Adds overhead to HW transactions
• Single-thread slowdown vs. locks

Can we eliminate this overhead?



Craig Zilles Transact `07 5

What if we had a “very cheap fine-grain 
memory protection mechanism”?

 STM protects data it accesses:
 written data: read + write protects
 read data: write protects
 STM transactions locally disable protection



Craig Zilles Transact `07 6

What if we had a “very cheap fine-grain 
memory protection mechanism”?

 STM protects data it accesses:
 puts data in “transactional partition”

 HW transactions “fault” if access STM data
 Do not need to access STM metadata
 Can run full speed; no single-thread overhead

 Does not dictate STM’s semantics

STM DATA

OTHER DATA

memory

protection


