
MLS 1

Evolving Beyond Transactions?
Michael L. Scott

University of Rochester

Thoughts for closing panel
TRANSACT ‘07

 But we aren’t even there yet!
 Maybe how we get there will help us move beyond

MLS 2

TM Design Philosophies
 All SW

» needed for legacy HW anyway
» might turn out to be enough
» HW GC and type checking were premature

 Best-effort HW
» fast most of the time
» correct all the time
» “merely correct” part runs on legacy machines

 All HW
» arguably fastest, and more predictable:
» avoid anomalies due to SW fallback
» for multiple policies, parameterize the HW

MLS 3

A Different Kind of Hybrid

RTM [TR Dec.’05, TRANSACT ’06,
 PPoPP ’07 poster, SPAA ’07, ISCA ’07]

 Leave policy in SW; accelerate with HW
» decouple conflict detection from speculative writes
» perform the latter on “real” data, former on metadata

 AOU jumps to handler on conflicting metadata write
 PDI permits cache inconsistency under SW control

» enable lazy resolution of RW and even WW conflicts
(as in RSTM, FSTM, and TL2)

MLS 4

Policy/Mechanism Split

 Maximizes freedom in programming model design
 Avoids pitfall of putting wrong policy in HW
 Facilitates dynamic tuning/adaptation
 May increase opportunities to use the HW for

other purposes

 But metadata management is costly — ~2X hit
compared to HTM

MLS 5

FlexTM
 (recent work; not yet published: Arrvindh Shriraman and

Sandhya Dwarkadas)
 Do conflict detection on real data, but decouple from

conflict tracking and resolution (and from buffering of
speculative state)

 HW read / write signatures for every processor
 Additional bit vectors to record conflicts with other

processors
 SW can choose to trap to handler on conflict or to poll the

vectors later (e.g. at commit, which remains local)
 All structures visible in main memory, so OS can virtualize

» Vectors that summarize signatures of descheduled threads

MLS 6

Other Uses
(See PPoPP poster & TR version of our ISCA paper)
 AOU for

» fast mutexes
» active messages
» rollback in ad hoc nonblocking algorithms
» ABA avoidance
» debugger watchpoints
» misc. security and fault-containment mechanism

 PDI for ordered thread-level speculation
(for performance or reliability)

 CSTs? not sure yet

www.cs.rochester.edu/research/synchronization/

PPoPP'08
The 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming

20–23 February 2008
Salt Lake City, Utah (co-located with HPCA-14)

Submission deadline:
13 (abstracts) / 20 Aug. 2007

www.ppopp.org

MLS 9

MLS 10

Concurrency Design Space

Credit: Bill Scherer

MLS 11

Transactional Sharing Models
 Contract between the user & the system

» Cf. programmer-centric memory consistency models
» ideally enforced by compiler

 Transactions appear to be strongly isolated if
programmer follows the rules
» static partition — too restrictive
» partition within global consensus phases

– e.g. via barriers
» privatizing transactions

– multiple possible implementations
» strong isolation

– probably too expensive for software — overkill

