Cashmere-2L: Software Coherent Shared Memory on a Clustered Remote-Write Network

Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt, Leonidas Kontothanassi, Srinivasan Parthasarathy, and Michael Scott

University of Rochester Computer Science

¹Digital Equipment Corporation Cambridge Research Laboratory
Cost Effective Parallel Systems

Remote-Write Network

SMP Nodes

- Excellent platform for software-based distributed shared memory (SDSM) protocols.
Cashmere-2L

- Protocol description
 - Principal operations
 - Performance advantages
- Performance results
 - One level vs. two level
 - Effectiveness of reduced protocol synchrony
- Conclusion and future work
Basic Protocol Design Principles

- Virtual Memory Faults (Page-based)
- Home-node based
- Directory-based
- Multiple Writer
Principal Protocol Operations

- **Page Faults**
 - Update global page state information
 - *Page Update*: Obtain up-to-date page data

- **Release**
 - Send modifications to the home node, via twins/diffs [Munin, Home-based LRC]
 - Send *write notices*

- **Acquire**
 - Invalidate all pages named by write notices
Key Performance Advantages

- Each processor in a node shares same page frame.
- Exploit remote-write network capabilities
 - Broadcast of directory modifications
 - Remote delivery of diff and write notices
 - Polling-based messaging
 - Fast application locks and barriers
Protocol Levels: Synergy

- Hardware coherence effectively performs coherence operations for the entire node.
- Redundant operations are avoided.
- Per-node logical clocks are used to timestamp key events, e.g.
 - Last write notice received (per-page)
 - Last Update (per-page)
Avoiding Redundant Updates

Node 2

P1: Acq Read Rel

P2: Acq Read

- Logical Clock: 5 → 6 → 6 → 7 → 7 → 7
- Last Update: 3 → 3 → 3 → 7 → 7 → 7
- Write Notice: 2 → 6 → 6 → 6 → 6

Page Update
NoPage Update

Write Notice
Protocol Levels: Compatibility

- Page Update operation should respect the modifications of local concurrent writers.
- Established technique
 - Shootdown all concurrent writers in the node.
- Cashmere-2L technique
 - Incoming Diffs
Compare up-to-date data to the twin.

Copy differences to the working copy and the twin.
Hardware Platform

- Thirty-two 233MHz 21064A processors (Eight AlphaServer 2100 4/233 SMPs)
 - 16K icache, 16K dcache on-chip caches
 - 1M board-level caches
- DEC Memory Channel I Network
 - One-way latency: 5.2 μs
 - Bandwidth
 » 29 MBytes/s per-link
 » 60MBytes/s aggregate
Performance: Two- vs. One-level

32 Processors

Speedup

Barnes Em3d Gauss Ilink LU Sor TSP Water

[Bar chart showing speedup comparison between two-level and one-level for various applications: Barnes, Em3d, Gauss, Ilink, LU, Sor, TSP, Water. Two-level speedup is represented in blue, one-level speedup in green.]
Execution Breakdown: 2L vs. 1L

32 Processors

Normalized Execution Time (%)
Incoming Diffs vs. Shootdown

- *No performance difference!*
 - Seems to contradict SoftFlash results

- *Important protocol design decisions*
 - Concurrent writers?
 » SoftFlash: single-writer
 » Cashmere-2L: multiple-writer
 - Page Tables
 » SoftFlash: shared
 » Cashmere-2L: separate
Two-level design provides significant performance improvements.

Remote-write network handles directories well.

Multiple-writer protocol and independent page tables reduces need for shootdown operations.
Future Work

- Continue improving overall performance.
 - Migrating home nodes.
 - Adaptive invalidate/update mechanism.
- Support new classes of applications.
 - Very large-scale resident data sets.
 - Out-of-core data sets.
- Examine impact of variable coherence granularities. (e.g. Shasta)